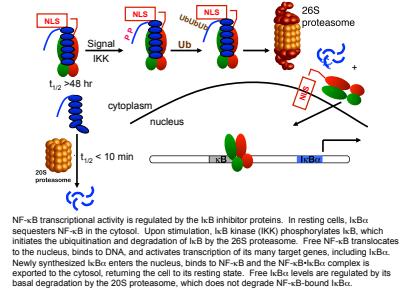
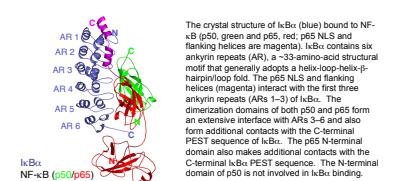


IκB α Structure and Dynamics Explored by smFRET

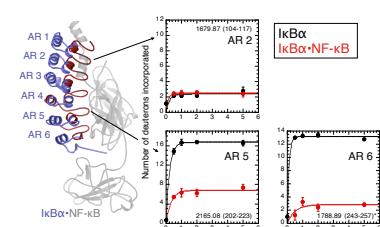
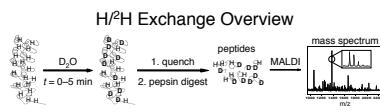
Jorge A. Lamboy,¹ Hajin Kim,² Taekjip Ha,² and Elizabeth A. Komives¹

¹Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, USA 92093-0378

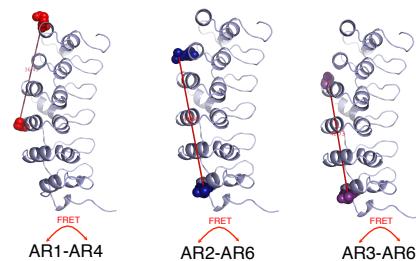

²Department of Physics, University of Illinois, Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, USA 61801


*These authors contributed equally to this work.

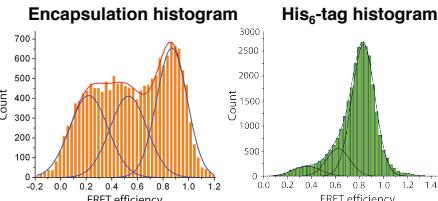
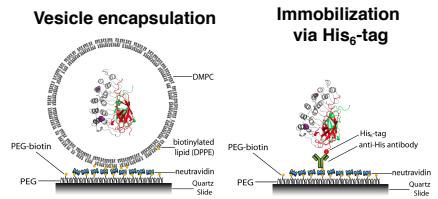
Introduction



More than 150 target genes, involved in a wide variety of cellular functions, are regulated by the nuclear factor kappa B (NF- κ B) transcription factors. IκB α is induced by many classes of stimuli, and it plays a key role in the regulation of cellular development and proliferation and in the immune and inflammatory responses. Aberrant regulation of NF- κ B has been implicated in a wide variety of disease states, including cancer, heart disease, AIDS, Alzheimer's disease, and arthritis.

Crystal structure of IκB α provides only a static view when bound to NF-κB


β -hairpins in ARs 5-6 show large decreases in solvent accessibility when bound to NF-κB

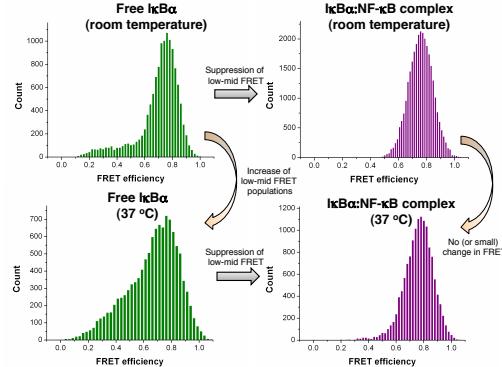
Truhlar, S. M.; Torpey, J. W.; Komives, E. A. *PNAS* **2006**, *103*, 18951-6.



Engineered IκB α sites for conjugation of FRET fluorophores

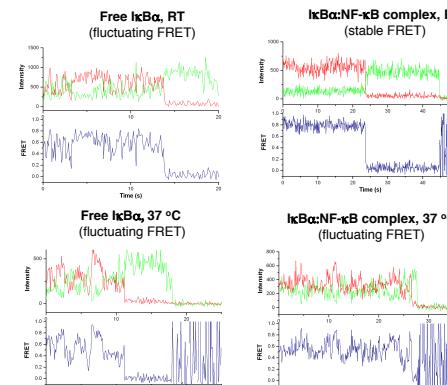
Single cysteines were introduced in each ankyrin repeat (using a Cys-free IκB α template) for conjugation with thiol-reactive FRET fluorophores.

IκB α immobilization approaches for smFRET

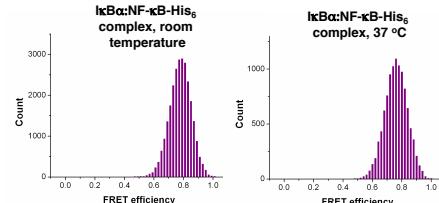
Interaction with DMPC lipids seem to partially unfold IκB α AR 3-6.



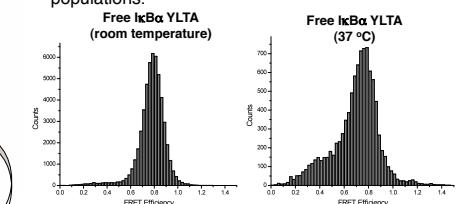
Cy3/Cy5 vs. Alexa 555/Alexa 647 dyes


Preliminary studies with the Cy3/Cy5 pair ($R_0 = \sim 60$ Å) revealed saturated FRET levels for several IκB α constructs, and observation of IκB α fluctuations was rare with this pair. The Alexa 555/Alexa 647 pair provided a shorter R_0 (~ 51 Å), which improved the FRET levels and allowed for resolution of IκB α fluctuations.

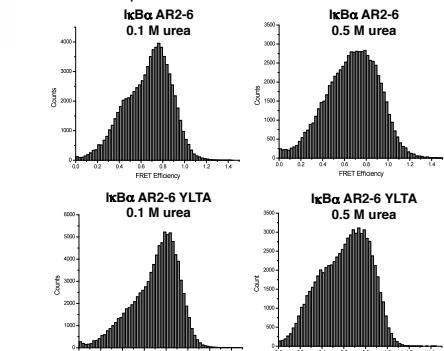
N-terminally His-tagged IκB α


The experiments investigated the FRET efficiencies of Alexa-labeled AR 2-6 in the presence and absence of NF-κB, at room temperature and 37 °C.

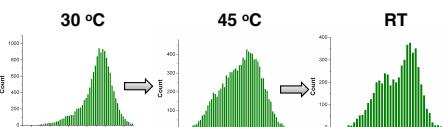
Sample traces of AR 2-6 molecules



Swapping the His-tag: immobilization of AR 2-6 via His6-tagged NF-κB


Pre-folding IκB α suppresses low-mid FRET

Introducing the Y254L/T257A mutations in repeat 6 (thereby constituting the ankyrin consensus sequence) results in reduced low-mid FRET populations.


Urea denaturation experiments

Incubation of IκB α AR 2-6 and YLTA constructs at low urea concentrations further unfolds the weakly folded repeats.

Thermal denaturation experiments

IκB α AR 2-6 becomes irreversibly denatured at 45 °C.

Future Directions

1. Proteasome degradation, temperature jump, urea flow-in experiments.
2. IκB α folding *in vivo*.

Acknowledgments

Support by a National Institutes of Health Minority Supplemental Fellowship.