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NF-B transcriptional activity is regulated by the IB inhibitor proteins.  In resting cells, IB

sequesters NF-B in the cytosol.  Upon stimulation, IB kinase (IKK) phosphorylates IB, which 

initiates the ubiquitination and degradation of IB by the 26S proteasome.  Free NF-B translocates 

to the nucleus, binds to DNA, and activates transcription of its many target genes, including IB.  

Newly synthesized IB enters the nucleus, binds to NF-B and the NF-B•IB complex is 

exported to the cytosol, returning the cell to its resting state.  Free IB levels are regulated by its 

basal degradation by the 20S proteasome, which does not degrade NF-B-bound IB.  

Crystal structure of IB provides only a static 

view when bound to NF-B

The crystal structure of IB (blue) bound to NF-

B (p50, green and p65, red; p65 NLS and 

flanking helices are magenta). IB contains six 

ankyrin repeats (AR), a ~33-amino-acid structural 

motif that generally adopts a helix-loop-helix--

hairpin/loop fold. The p65 NLS and flanking 

helices (magenta) interact with the first three 

ankyrin repeats (ARs 1–3) of IB.  The 

dimerization domains of both p50 and p65 form 

an extensive interface with ARs 3–6 and also 

form additional contacts with the C-terminal 

PEST sequence of IB.  The p65 N-terminal 

domain also makes additional contacts with the 

C-terminal IB PEST sequence.  The N-terminal 

domain of p50 is not involved in IB binding.  

More than 150 target genes, involved in a wide variety of cellular functions, are regulated by the 

nuclear factor kappa B (NF-B) transcription factors. NF-B is induced by many classes of stimuli, 

and it plays a key role in the regulation of cellular development and proliferation and in the immune 

and inflammatory responses. Aberrant regulation of NF-B has been implicated in a wide variety of 

disease states, including cancer, heart disease, AIDS, Alzheimer’s disease, and arthritis.
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1. Investigate IB folding dynamics in the presence of 
NF-B using bulk and single-molecule FRET.

2. Measure bulk and single-molecule FRET of stable, pre-
folded IB mutants.

3. Use an AcGFP1-IB-mCherry fusion protein to 
investigate IB dynamics in vivo, in the presence and 
absence of NF-B.
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Introduction

Engineered IB sites for conjugation of FRET 

fluorophores

AR1-AR6

Single cysteines were introduced in each ankyrin repeat 

(using a Cys-free IB template) for conjugation with 

thiol-reactive FRET fluorophores.
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The IB cysteine mutants express well and remain 

monomeric

I. Bulk FRET Measurements

Summary of FRET efficiencies and inter-dye distances
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Single molecule experiments eliminate the signal 

averaging observed in bulk measurements and 

allows the direct observation of unique IB folding 

states.  

Förster Resonance Energy Transfer (FRET) as a tool 

for studying protein dynamics

Transfer of energy from a photo-excited donor to an 

acceptor fluorescent molecule located in close proximity.  

Resonance Energy Transfer 

Jablonski Diagram

Intramolecular FRET
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β-hairpins in ARs 5–6 show large decreases in 

solvent accessibility when bound to NF-κB

H/2H Exchange Overview
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The experiments compared the FRET efficiencies of 

IB samples labeled with a single Cy3 fluorophore or 

Cy3/Cy5 pairs.
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

E 1 (FDA /FD)



E 0.76



r 
R0
6  (E R0

6 )

E
6



R0  60



r  50Å

ÅUsing

I. Efficiency (E) calculation II. Distance (r) calculation

Sample calculation of FRET efficiencies and inter-

dye distances 

Cy dyes Alexa dyes

Sample E r (Å) E r (Å)

AR1-AR4 0.76 50 0.49 54

AR2-AR5 -- -- 0.42 57

AR3-AR6 0.48 61 0.32 61

Control experiment: FRET efficiency vs. worm-like 

chain (WLC) prediction distance

A linear relationship is observed between the predicted 

WLC distances and the FRET efficiencies of urea-

denatured IB samples.

microscopy.fsu.edu

II. Single-Molecule FRET Measurements

AR1-AR4 IB

AR3-AR6 IB

Constant FRET 

observed for the 

well-folded AR1-AR4 

IB before Cy5 

photobleaching 

occurs.

Variable FRET 

observed for the 

weakly-folded AR3-

AR6 IB. Switching 

of the FRET 

efficiency reflects 

the dynamic 

behavior of the sixth 

ankyrin repeat.


