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We examine the ability of Bayesian methods to recreate structural ensembles for partially folded
molecules from averaged data. Specifically we test the ability of various algorithms to recreate
different transition state ensembles for folding proteins using a multiple replica simulation algorithm
using input from “gold standard” reference ensembles that were first generated with a Gō-like
Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the
“experimental” � values, were first constructed from this reference ensemble. The resulting �
values were then treated as one would treat laboratory experimental data and were used as input in
the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica
algorithm were compared to the gold standard reference ensemble, from which those “data” were,
in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the
multiple replica algorithm does recreate the reference ensemble fairly successfully when no
experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component
analysis show that the overlap of the recovered and reference ensembles is significantly enhanced
when multiple replicas are used. Reduction of the multiple replica ensembles by clustering
successfully yields subensembles with close similarity to the reference ensembles. On the other
hand, for a high barrier transition state with two distinct transition state ensembles, the single replica
algorithm only samples a few structures of one of the reference ensemble basins. This is due to the
fact that the � values are intrinsically ensemble averaged quantities. The replica algorithm with
multiple copies does sample both reference ensemble basins. In contrast to the single replica case,
the multiple replicas are constrained to reproduce the average � values, but allow fluctuations in �
for each individual copy. These fluctuations facilitate a more faithful sampling of the reference
ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by
introducing errors in � comparable in magnitude to those suggested by some authors. In this
circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor
using a single replica, but are improved when multiple copies are used. A multimodal transition state
ensemble, however, turns out to be more sensitive to large errors in � �if appropriately gauged� and
attempts at successful recreation of the reference ensemble with simple replica algorithms can fall
short. © 2006 American Institute of Physics. �DOI: 10.1063/1.2375121�

I. INTRODUCTION

The most studied proteins in the cell fold to a reasonably
well-defined, average native conformation. The fact that
folding times of proteins are relatively short when compared
to the time needed for the protein chain to explore all its
possible conformations leads to the conclusion that the pro-

tein must be guided towards the native state. The contacts
formed in this native conformation must on average be more
stabilizing than random contacts allowing the protein mol-
ecule to fold to the native conformation by trading entropy
for energy. This principle of minimal frustration1 captures
the essential physics of the folding of naturally evolved pro-
teins. The energy landscape of protein folding for proteins
that fold reliably therefore resembles a rough funnel.2 Energy
landscape theory describes the folding process down the fun-
nel as a progressive organization of ensembles of partially
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folded structures.3 For two-state folders owing to uneven
compensation of entropy loss by stability gain, there is a
bottleneck in the flow between the folded and unfolded
minima in the free energy which represents the transition
state. In the energy landscape ensemble view, the transition
state is best described as an ensemble of configurations
rather than a single structure.4

Many experimental techniques have been developed to
infer structural information about the structural ensembles
for incompletely structured proteins along the folding funnel.
With the exception of single molecule studies, those experi-
ments that do provide structural information along the fold-
ing funnel typically provide only ensemble averaged quanti-
ties. For long lived intermediates, these measured averages
directly include NMR parameters and fluorescence resonance
energy transfer �FRET� distances, and sometimes structural
averages can indirectly be inferred through H/D exchange
profiles which are, however, intrinsically kinetic. Using the
assumption of a funneled landscape, similar information can
often be obtained for the fleeting transition state. The
protein-engineering method5 developed by Matouschek et al.
provides �for smooth landscapes� structural information
about the transition state ensemble analogous in many re-
spects to NMR data obtained for long-lived intermediates.
This approach assigns a �i

expt value to each residue. The �i
expt

value is defined as the ratio of the change of the apparent free
energy difference between the transition state ensemble and
unfolded state ensemble upon a conservative mutation of the
residue i to the change in free energy between the native and
unfolded ensembles free energy with the same mutation. A
�i

expt value of unity for a residue would indicate that the
changes in free energy made by this residue in the transition
state are the same as the changes in the native state, whereas
a �i

expt value of zero would indicate that this residue has no
nativelike interactions. Assuming that the native contacts in
the protein alone account for the stabilizing interactions,6 a
�i

expt value can then be approximated as the fraction of native
contacts made7 and this averaged structural quantity can be
used as a restraint in molecular dynamics simulations.8–12

Technically, this identification is only valid for a perfectly
homogeneous funnel landscape. Defining a contact distance
RC for interacting amino acids, the determined � values can
then be used as constraints on the ensemble of protein struc-
tures, requiring each residue to form a fraction of its native
contacts to within an upper distance bound RC. The measured
constraints, however, do not enforce a precise distance for
two residues in contact. This raises the question whether �or
when� ensembles deduced from the �-value constraints are
structurally equivalent to the actual ensemble probed by the
experiment. That is, can the real ensemble be faithfully rec-
reated from experimental data alone? Also do some algo-
rithms give greater fidelity in reconstruction than do others?
In particular, the experimentally derived restraints may be
applied equally to every structure encountered on a single
molecular dynamics �MD� trajectory �the “single replica”
case�; alternatively a multiple replica algorithm may be used
where the restraints are applied to the ensemble of structures
observed in a number of simultaneous MD simulations

thereby allowing individual replicas to have fluctuations
while restraining the ensemble average. Davis et al.13 have
already shown that in the case of the �3s peptide two repli-
cas were required to correctly predict the transition state
structures from the ensemble-average set of � values. This
result encourages examining more quantitatively the benefits
of using multiple replica algorithms.

Here we present an extension of the multiple replica ap-
proach to the simultaneous determination of a transition state
ensembles. We test this approach by attempting the recre-
ation of a completely known, candidate transition state en-
semble of 500 structures of the �-repressor protein. First we
create several surrogates for the “experimental transition
state ensembles,” which we shall term reference ensembles,
sampled from simulations using native structure based14

Hamiltonians for the � repressor both with and without
nonpairwise-additive interaction terms. From the reference
ensembles we calculate the average � value for each residue.
These computed � values then serve as surrogate experimen-
tal constraints for the replica simulation algorithm. Single
and multiple replica molecular dynamics simulations are
then performed with a Hamiltonian that biases the ensembles
to match the experimental �-value constraints but otherwise
has no a priori biases. Since the structures of the reference
ensembles are known, the success of recreating the original
ensemble using the multiple replica algorithm can be rigor-
ously evaluated with a statistical test, the Kolmogorov-
Smirnov test.15 In the Kolmogorov-Smirnov �KS� test two
ensemble distributions, one given by the reference ensembles
and the other given by the ensembles obtained in the replica
molecular dynamics simulations, are compared and it is
tested whether these two distributions are substantially the
same. When the two ensembles differ, a method can be used
to uncover possible matching subensembles from the en-
sembles obtained in the replica molecular dynamics simula-
tions. These subensembles can be obtained by clustering the
structures and selecting the most dominant cluster as a rep-
resentative ensemble. These representative subensembles can
then also be compared to the reference ensembles. To study
whether multiple replica recreation methods are more faith-
ful than single copy approaches, we first analyze the princi-
pal components of the contact maps of all structures in the
reference ensembles and in the ensembles obtained in the
replica simulations. The principal component analysis indi-
cates that the sampling is improved, when multiple replicas
are introduced. Finally we probe the robustness of the en-
semble recovery to realistic uncertainty in the input data.
Experimental quantities always have errors associated with
them. To mimic these errors, we assigned new � values for
each residue by generating a random number drawn from a
Gaussian distribution with its maximum located at the origi-
nal � value of that residue and with a variance given by the
variance of that � value in the reference ensemble. The new
set of � values then served as input for the replica Hamil-
tonian ensemble reconstruction. The ensembles obtained
from the replica algorithm with the new set of � values
as experimental constraints were compared to the original
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reference ensemble. This procedure quantitatively probes
how large errors in � can substantially reduce the chances of
faithful ensemble recreation using replica simulation algo-
rithms.

II. METHODS

A. Reference ensemble creation

In order to rigorously test the fidelity of a reconstruction
procedure a well characterized reference ensemble must first
be available. An off-lattice simulation with a native structure
based Hamiltonian16 with variable strength nonadditive
terms as described in detail earlier14 was chosen to provide
such reference ensembles for the reconstruction procedure.
These reference ensembles are considered “gold standard”
ensembles and represent the ensembles that experiments
strive to determine. The energy function used to obtain these
ensembles is given as the sum of a native structured based
but nonadditive Hamiltonian Hna and standard backbone en-
ergy terms,

H = Hbackbone + Hna. �1�

This energy function applies to a reduced set of coordinates
of the heavy backbone atoms, C�, C�, and O. In this reduced
description, the positions of the nitrogen and C� carbons can
be calculated assuming ideal protein backbone geometry.
The backbone potential takes on the following form:

Hbackbone = ���V�� + ��V� + �exVex + �harmVharm. �2�

The backbone terms17 in the Hamiltonian ensure that the
backbone has physically allowable conformations. The pla-
narity of the peptide bond is constrained by the SHAKE algo-
rithm and three simple harmonic potentials Vharm, which re-
strain the nitrogen-C�, nitrogen-C�, and C�–C� distances
close to 2.46, 2.45, and 2.51 Å, respectively. A chirality po-
tential V� biases the C� atoms towards the L configuration
which is preferred in nature. The � and � angles of the
protein backbone are biased with the Ramachandran poten-
tial V��. This potential biases the torsional angles of the
protein to regions allowable for a naturally occurring protein.
The barriers between minima of the Ramachandran potential
are intentionally set low to facilitate more rapid chain dy-
namics. Excluded volume effects are included between
C�–C�, C�–C�, C�–C�, and O–O pairs through the Vex po-
tential. The individual � parameters in the backbone Hamil-
tonian scale the interactions to physically reasonable values.

The Hna energy depends on Gaussian interaction terms
for native contact pairs only. Hna is given as a function of
pairwise energy terms raised to the power p.

Hna = − 1
2�

i

�Ei�p. �3�

The parameter p in the Hamiltonian is the power of nonad-
ditivity and introduces �p+1�-body interactions as well as p,
p-1 , . . . ,2-body interactions with range rC=8.0 Å. Usually
increasing p results in additional cooperativity and hence in
increased barrier heights for folding. The individual pairwise
energy terms can be written in a normalized form containing
a cutoff distance rc.

Ei = �
j

�ij�rij� = − �
j
� �

a
�1/p

��rc − rij
N�	ij


exp�−
�rij − rij

N�2

2�ij
2 	 . �4�

The contribution of Hna to the native state energy of a protein
with N residues is by definition 4N�. This is ensured if the
normalization constant a is defined as

a =
1

8N
�

i
��

j

	ij��rc − rij
N��p

. �5�

The weighting function 	 and the well width � depend on
the sequence separation of residues i and j and are chosen
such that the energy of the ground-state energy for p=1 at a
cutoff distance of rc=8 Å is evenly divided between short
��i− j��5� and long range interactions in sequence space as
suggested by the analysis of Saven and Wolynes for helical
proteins.18 The parameters are

�ij = �i − j�0.15 Å,

	ij = 
0.125 �i − j� � 5

0.5 otherwise.
� �6�

The total Hamiltonian described above can be used to
infer the thermodynamic properties of a given system. To
obtain useful free energy profiles, a proper reaction coordi-
nate has to be chosen. One appropriate coordinate is Q, a
measure of native likeness,

Q =
2

�N − 1��N − 2� �
i�j−1

exp�−
�rij − rij

N�2

2�ij
2 	 , �7�

Q is a normalized quantity that describes structural similarity
of a given structure with coordinate set �rij
 to a reference
structure, for folding and structure prediction usually the na-
tive structure, with coordinates �rij

N
. Free energy profiles
were then obtained with the weighted histogram analysis
method �WHAM� with umbrella sampling. 17 constant tem-
perature molecular dynamics simulations were performed
with a biasing potential that is a polynomial in Q of fourth
order centered on different values of Q �Q0=0.9, 0.85, 0.8,
0.1� to obtain good phase-space sampling along this reaction
coordinate. The Q constraint in the potential is sequentially
reduced from Q=0.9, which is almost nativelike, to Q=0.1.
This procedure reduces the equilibration time of the system.
During each of these constant temperature molecular dynam-
ics simulation, 200 independent samples Ns

obs of Q and en-
ergy E, the backbone and Hna energy, were collected at regu-
larly spaced time steps. These time steps were larger than the
correlation time between sampled structures. The samples
therby obtained were independent of earlier configurations
sampled. The first 40 samples of each simulation run were
discarded to help ensure that the system reached equilibrium,
before samples were entered into the free energy calculation.
A histogram Ns�E ,Q� for all 17 simulations was created. The
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density of states n�E ,Q� of the system �Eastwood et al.,
2001� was calculated from the histograms

n�E,Q� = �
s

ws�E,Q�
Ns�E,Q�

Ns
obs Zs��s�exp��s�Vs�Q� + E�� .

�8�

Here s labels the simulation and w represents a weighting
function defined as

wi =
As

−2

�
m

Am
−2

,

�9�

As
−2 =

n�E,Q�
Ns

obs Zs��s�exp��s�Vs�Q� + E�� .

The density of states and the weighting function are func-
tions of the partition function Zs. The partition function, on
the other hand, is also a function of the density of states,

Zs��s� = �
E,Q

n�E,Q�exp�− �s�Vs�Q� + E�� . �10�

This set of equations can be used to obtain for n�E ,Q� self-
consistently to within a multiplicative constant and hence the
free energy was obtained to within a constant as

F�Q,T� = − kBT log��
E,Q

n�E,Q�exp�−
E

kBT
		 . �11�

The free energy profile at folding temperature Tf can be
inspected and ensembles for the denatured state, the transi-
tion state, or any other reference state of choice can be found
by Q. Structures with the appropriate Q value entered into
the reference ensemble.

B. �-value molecular dynamics replica simulation
technique and details

Given a set of experimental � values ���i�exp
 for the
residues of the protein, we can write down a replica Hamil-
tonian that constrains ensemble averages to the values pro-
vided by experimental measurements for each residue. The
simplest form of the replica Hamiltonian contains standard
backbone terms as described above while adding the experi-
mental biasing potential. Optionally other energy terms,
Hfunnel, that vary the protein energy landscape and encode
prior theoretical expectations can also be included. In this
paper Hfunnel will be set to 0.

Hrep = Hback + Hfunnel + �
i=1

N

�i��i − ��i�expt�2, �12�

with N being the total number of residues. The ensemble
average � value �i is the arithmetic average over the real-
izations of the individual replicas.

�i =
1

Nrep
�

=1

Nrep

�i

, �13�

where Nrep is the number of simulated replicas. To perform
molecular dynamics simulations, a recipe to calculate � from

the observed contacts must be given. Although � is a dy-
namical quantity measured from the ratio of thermodynamic
and kinetic quantities, an often used surrogate for � is the
ratio of native contacts made divided by the maximum num-
ber of native contacts possible. This surrogate, of course,
assumes the landscape is, in fact, reasonably funneled.19 An
explicit equation for �i


 in terms of a contact function cij is

�i

 =

1

Ncont
i �

�j�
cij =

1

Ncont
i �

�j�

1

2
�1 + tanh�5�rc − rij��� �14�

The contact function considers native contacts to be formed
only if they reside within some cutoff distance rc. The cutoff
distance for C� contacts usually lies in the region of
6.5–8.5 Å. In the present study cutoff distances of 6.5 and
8.0 Å have been used. We only present results for a cutoff
distance of 6.5 Å. The definition of the set of contacts for the
completely native structure depends on the value of the cut-
off distance between the C�’s. Once a value for the cutoff
distance is chosen, the appropriateness of this value for de-
fining contacts can be checked for consistency with other
methods of assigning contacts such as the CSU algorithm
which rely on all-atom structural information. The functional
form of the contact function is a tanh function, whose con-
tinuous nature prevents numerical errors in the dynamics.

The simulation scheme used is as follows: Constant tem-
perature molecular dynamics simulations are performed at
three temperatures, TF 0.25TF, and 1.75TF for 1, 2, 4, and 8
replicas. The folding temperature TF corresponds to the
“physiological” transition temperature for folding of the non-
additive Gō-like energy function described above. The sim-
plicity of the model allows extensive sampling to be done. It
is straightforward to employ simulations of length of the
order of 1 ms. This time scale ensures enough sampling to
compensate for topological traps in the energy landscapes.
The results are checked to ensure they converged. The simu-
lations involve different numbers of replicas, but the total
number of sampled conformations is kept constant between
simulation runs with different numbers of replicas. The en-
sembles can now be fairly compared.

We first test to make sure that the input � values are
reproduced. Next a statistical test is used to decide whether
ensembles generated from the replica algorithm differ from
the reference ensemble or not. An appropriate statistical test
for comparing ensemble distributions is the the KS test. The
KS test quantifies whether two distributions differ from each
other in a statistically significant way. To apply the KS test,
the ensembles are first reduced to distributions that are func-
tions of only a single, independent variable. This single in-
dependent variable is chosen to be a structural overlap mea-
sure q defined analogously to Q, but where all q’s of the
structures in the ensemble are measured relative to each
other rather than measured to one single reference structure.
The KS test requires calculation of distributions of q for all
pairs of structures within the simulated ensemble �PB�q��, all
pairs within the reference ensemble �PA�q��, and all pairs
with one member chosen from each of the two ensembles
�PAB�q��. The KS test is then performed on the individual
distributions, which tests if two distribution are statistically
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identical, typically we compare PA�q� with PAB�q�. In our
case where we have a large amount of data when comparing
two different Hamiltonians, the result of the test indicate that
the two distributions are not exactly the same. However, the
KS statistics itself provides a very useful measure for quan-
tifying the magnitude of the difference, and simply visualiz-
ing the difference between the distributions is illuminating.

C. Principal component analysis

Contact maps for the reference ensemble and the en-
sembles obtained from the replica simulations were com-
puted for all individual structures. Principal component
analysis �PCA� of the binary contact degrees of freedom for
these ensemble structures was performed.20 The PCA we em-
ploy is not the more commonly used PCA based on Cartesian
coordinates. The more commonly used PCA is based on the
diagonalization of the Cartesian coordinates. This is less use-
ful in the current problem due to the fact that the transition
state ensembles generally show large anharmonic conforma-
tional differences that go beyond simple vibrational-like
fluctuations of Cartesian coordinates. This approach uses a
very coarse-grained degree of freedom: the contact map,
which is the simplest site specific measure of a folding
progress. To facilitate the analyses, we further coarse grained
the contacts by grouping neighboring residues into groups of
three residues, i.e., a coarse-grained contact matrix is calcu-
lated for each structure, with each of those independent ele-
ments either being 0 or 1. The contacts are reduced to 27

 �27−1� /2=378 elements that are either 0 or 1. The result-
ing reduced covariance matrix of dimension 378
378 is di-
agonalized and the eigenvalues for the contact map PCA are
calculated. The two most dominant principal components are
plotted.

D. Structural clustering analysis

The Fitch-Margoliash algorithm21 is a distance based
bioinformatic algorithm to fit a phylogenetic tree to a dis-
tance matrix. The numerous structures obtained from the
simulation runs were clustered using the FITCH program of
the PHYLIP package.22 The FITCH program can be used to
create phylogenetic trees based on any given distance mea-
sure. In order to analyze the structures obtained in the simu-
lated annealing with the bioinformatic software, a topology
based distance measure d between two structures A and B
was defined through the structural overlap q as d=1−q. The
order parameter q represents the relative similarity of two
structures and is defined analogously to Q. Since q is a nor-
malized measure of the fraction of overlapping contacts, d is
a measure of how dissimilar two structures are in terms of
their contacts. Similar structures with small d are close and
dissimilar structures with large d are structurally far away.
Since q, unlike �, is sensitive to the correct distance between
residues rather than just constraining two residues to be
within a cutoff distance, the clustering should group all struc-
tures based on their local secondary global as well as their
global tertiary structure. This clustering technique helps in
extracting subensembles with more narrowly defined local
structures.

III. RESULTS FOR THE TRANSITION STATE
ENSEMBLE OF THE � REPRESSOR

We first present the complete results of ensemble recov-
ery with replicas for the transition state ensemble of the �
repressor. The � repressor is a well studied DNA-binding
regulatory protein with a four helix bundle fold. Experimen-
tal data suggest that the � repressor is a two-state folder with
a low barrier between folded and unfolded basins.23 To test
the inversion algorithm, reference ensembles for the � re-
pressor �protein data bank �pdb� code 1lmb �Ref. 24�� were
first generated with the nonadditive Gō-like Hamiltonian us-
ing Q as a reaction coordinate. Although there has been con-
troversy about the merits of Q as a reaction coordinate,25 this
controversy is irrelevant for our present purpose of obtaining
reference transition-state ensembles which are only to be
used as test beds for studying the reproduction of an en-
semble from its averaged properties alone. To assure the
reader of the validity of the ensembles obtained with this
Hamiltonian, we note that it has already been tested whether
these Hamiltonians with many-body interactions produce en-
sembles, that resemble ensembles one would measure in ex-
periments. This has been done by testing the correlation of
experimental � values and experimental folding rates to the
� values and folding rates obtained with the nonadditive
Hamiltonian. It has been shown that great agreement with
experiment can be reached, when the fraction of energy aris-
ing from three-body terms in the native state is approxi-
mately 20%.26 A power of nonadditivity in the range p
=2–3 for our Hamiltonian should lead to nonadditive con-
tributions to the energy of a magnitude found in real
proteins.14 WHAM simulations with umbrella sampling were
performed at the putative folding temperature kBT /�=1.0.
The free energy profiles were then calculated as described in
the Methods section. To obtain a more refined estimate of the
folding temperatures the free energy profiles were extrapo-
lated to nearby temperatures to find the temperature where
the depths of the folded and unfolded basins coincide. Fur-
ther WHAM simulations with umbrella sampling were then
performed at this new temperature. The free energy profiles
were calculated with the new data yielding a more accurate
estimate of TF. This procedure was repeated until conver-
gence, which in practice occurred after only two rounds of
WHAM simulations. The free energy profiles of the � repres-
sor at TF=0.97, 1.02, and 0.93 for a classical native structure
based Hamiltonian with p=1 and for Gō-like Hamiltonians
with many-body effects for p=2 and 3 respectively are
shown in Fig. 1. The free energy curves exhibit a two-state
folding character with a barrier between folded and unfolded
states, that increases with increasing parameter p. For p=1
and 2 the barrier between unfolded and folded basins is
roughly �1kBTF indicating that the weak cooperative effects
present. Introduction of four body terms corresponding to p
=3 increases the barrier roughly tenfold to about �8kBTF.
Various reference ensembles are then read off the free energy
profile. The Q score of the transition state ensemble was
determined at the maximum value of the free energy curve
between the folded and unfolded basins. The transition state
ensembles had a Q score of about Q=0.5. Approximately
500 independently sampled structures were chosen for each
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transition state ensemble for p=1, 2, and 3 to represent the
reference ensemble. The contact maps for the ensembles ob-
tained with p=1 and p=3 are shown in Fig. 2. Contact maps
of native contacts only are shown above the diagonal
whereas both native and non-native contacts are shown be-
low the diagonal. From the native contact maps it is apparent
that the C-terminal and the long N-terminal helix are most
ordered in the transition state ensemble. The DNA binding
site �pdb residues 34–54� is most disordered in the transition
state. The reference ensembles also show several non-native
contacts with low contact probability in the ensemble.

The inversion algorithm derives structures only from the
input � values, which are calculated from native contacts.
The � value is defined as a fraction of native contacts, where
contacts are defined to fall within a certain cutoff distance.
The inversion of such data might then be not accurate on the
more local level due to the lack of secondary structure infor-
mation in the inversion Hamiltonian and lack of knowledge
of low-probability non-native contacts. A set of � values
denoted ���i�expt
 and the corresponding �in this case, statis-
tical� error ��i was calculated for each of the reference en-
sembles. The native structure of the protein, the ���i�expt
,
and �in some cases� the statistical errors were the only data
used to infer the transition state ensembles. The simplest
energy function, that can be used to recover ensembles from
the given information, is a Hamiltonian which reproduces the
given ensemble averaged constraints but that has no knowl-
edge of the energy landscape of folding of the protein. Such
a basic Hamiltonian is given in Eq. �12� with Hfunnel=0. The
only unknown parameter in the Hamiltonian is the strength
of interaction of the experimental restraint, the parameter �.
To approximately determine the parameter �, successive
�-value simulations with gradually increasing values of �
were performed to set a uniform � value for all residues such
that the experimental constraints are fulfilled. Comparison of
the experimental � values to the simulation � values showed
a consistent match with high correlation for different num-

bers of replicas �data not shown�. This indicates that the
restraints in the simulation are strong enough that ensembles
with the correct � values for each residue are indeed pro-
duced. We note that the results for p=2 are very similar to
those found for the p=1 case and discussion of the p=2
results will therefore be omitted. The individual ensembles
obtained from the replica simulations each consisted of 1600
independently sampled structures taken from millisecond
long molecular dynamics trajectories. From the structures
found in the simulations with replicas and the reference en-
sembles probability distributions of the single independent
variable q, the structural overlap reaction coordinate may
be extracted. A statistical test can be performed to check

FIG. 1. Free energy profiles at folding temperature TF as a function of Q
obtained with WHAM and umbrella sampling with the nonadditive Hamil-
tonian. The free energy shows two-state behavior with increasing barrier for
increasing p, the power of nonadditivity. The free energy profile shows a
transition state ensemble at Q�0.5.

FIG. 2. Native contact map only �above diagonal� and complete contact map
�below diagonal� of the transition state reference ensembles of the � repres-
sor for p=1 �a� and p=3 �b� averaged over all structures. A contact is
defined when the distance of the C� carbons are within 6.5 Å. A dark red
contact corresponds to a contact that is on always formed in the transition
state ensemble. A dark blue contact, on the other hand, is never formed in
the transition state ensemble.
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whether the ensembles obtained from the �-value molecular
dynamics replica simulations for one to eight replicas can be
considered apart from incomplete sampling identical to the
reference ensemble which was used to generate the input �
values. Figure 3 shows the results of the KS test for the
various transition state ensembles. Two structural ensembles
are equal �or there is an absence of evidence that they differ�
if the probability distribution of pairwise overlaps, P�q�, is
the same irrespective of whether the pairs are drawn from the
same ensemble or from distinct ensembles. For the p=1 and
p=3 transition state ensembles, the probability distribution
of overlaps between the one replica and reference ensemble
has some overlap with the distribution of overlaps within the
reference ensemble. However, this overlap between distribu-
tions is not large, showing that the reference ensemble and
the ensemble obtained from the one-replica simulation are in
fact cannot be considered the same, although they both have
the same set of � values. It seems that the structural order
parameter q since it varies more strongly with the exact dis-
tances between amino acid pairs is a more demanding simi-
larity measure than �, which depends only on whether con-
tacts form within a specified cutoff distance. Two residues
that are closer than the cutoff distance for a contact but near
that limit contribute strongly to �, but lead to a low qij value
for that residue pair, if the distance of the residue pair is very
near in the reference transition state ensemble. Thus we see
that using � values alone for reconstruction may lead to
discrepancies in short-ranged local structural elements such
as the �-helical structures of the ensembles obtained with the
replica simulation algorithm and the gold standard ensemble.
Nevertheless both � and q are adequate order parameters to
quantify a conformation and its global fold.

Another question we can address is whether a larger �
parameter that would reflect the availability of more accurate
data would eventually lead to precise reproduction of the
reference ensemble. One might argue that increasing the
strength of interaction, the � parameter, could force the re-
generated ensemble to approach the reference ensemble. KS
tests have been performed with increasing value of �, but
they showed no noticeable improvement for the recovery of
the reference ensemble with one replica. Apparently the
structural imprecision of � also plays a role in determining
the fidelity of ensemble recovery. Without knowledge of the
energy landscape of folding of the � repressor, the KS test
above indicates that one cannot conclude that the one-replica
Hamiltonian will reliably deduce the reference ensemble
even though it reproduces the set of experimental � values.
The reference ensemble is only partially reproduced using
the one-replica simulation technique. Nevertheless, inversion
with one replica can be judged to be partially successful.

In contrast to the one replica ensemble reproduction the
curves of the overlap distributions for multiple replicas are
bimodal. To check whether the bimodality of the replicas is
an artifact of a recovered ensemble with unfolded and folded
structures, that on average match the reference � values, the
probability distribution of the recovered ensemble obtained
with the eight replica algorithm is plotted. The average �
value of each snapshot is calculated and the results are
binned in bins of size of 0.005. The reference ensemble is

FIG. 3. Shown are the overlap distributions at the folding temperature of the
ensembles obtained from replica simulations with the reference ensemble,
for the three different transition state ensembles with p=1 �a� and p=3 �b�.
The self-overlap distribution of the reference ensemble is also shown. In the
one replica case the distribution of overlaps with the reference ensemble is
different from the reference self-overlap distribution, indicating the two en-
sembles are different although the � values were recovered with the one-
replica Hamiltonian. Increasing the parameter � �not shown� did not result
in better reproduction of the ensemble. The overlap distribution functions of
the multiple-replica ensembles with the reference ensemble show bimodal
distributions with one part of the distribution overlapping well with the
self-overlap distribution of the reference ensemble. To assure that the bimo-
dality of the probability distribution of the recovered ensembles stems from
a nontrivial replica symmetry breaking, rather than the trivial case of merg-
ing ensembles of completely folded and unfolded replicas, the probability
distribution of the average � value of each individual realization in the
recovered ensemble with eight replicas is plotted in �c�.
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also plotted for comparison. One of the two peaks of the
overlap distribution overlaps well with the reference en-
semble probability distribution suggesting that the ensembles
are similar. These results suggest that the reference ensemble
can be extracted from the ensemble obtained with simula-
tions with multiple replicas. The nature of the bimodal prob-
ability distribution suggests that the replicas are not homo-
geneous but instead break the replica symmetry. It is clear
from Fig. 3�c� that the broken replica symmetry does not
stem from a simple division of folded and unfolded struc-
tures of the recovered ensemble. The underlying replica sym-
metry breaking is more subtle. The distribution of the aver-
age � value of each realization �or snapshot� of the
recovered ensemble is similar to the distribution of average
� values of the reference ensemble.

IV. SAMPLING ENHANCEMENT THROUGH MULTIPLE
REPLICAS

Principal component analysis of the contact maps of
each structure allows a convenient visualization of the pat-
terns of variation in contact probabilities in the subensembles

and hence allows the study of the range of conformations of
all residues in those structural ensembles. Figure 4 displays
the conformations of the structures of the reference ensemble
and the regenerated ensembles for one to eight replicas pro-
jected onto the first two principal components. In the p=1
case the first principal component is a good indication of the
sampling of the reference ensemble. The reference ensemble
shows a negative first principal component �PC1� with most
conformations in the region of PC 1=−2 to −4. The projec-
tions of the conformations obtained with multiple replicas
show much more overlap with the reference ensemble than
the projections of the one replica conformations. The recre-
ated ensemble obtained with multiple replicas is substantially
shifted towards more negative PC1 when compared to the
one replica ensemble. The multiple replica algorithm better
samples reference-ensemble-like structures than does the
single replica algorithm although the number of independent
samples is kept equal between all replica simulation runs of
single and multiple copies. To test whether the degree of
overlap of each of the multiple replica ensembles with the
reference ensemble is artificially high due to the fact that all
ensembles including the single replica ensemble enter the
PCA, analysis of the individual multiple replica ensembles

FIG. 4. The two principal components of conformations found in the refer-
ence ensemble and ensembles obtained with the replica algorithm with one
to eight copies for the p=1 case �a� and the p=3 case �b� are shown.

FIG. 5. Overlap distributions of the reduced ensembles from the replica
simulations for 2, 4, and 8 replicas with the p=1 �a� and the p=3 �b�
ensemble. The ensembles obtained from the clustering technique described
in the method section improved the prediction success of the experimental
ensemble for p=1 tremendously as measured by the KS test. For the p=3
ensemble the reduced ensembles reproduce the reference ensemble as mea-
sured by the KS test partially.
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with the reference ensemble has been performed, which
shows very similar results. The advantage of the multiple
replica algorithm seems even more apparent for the p=3
reference ensemble. Here the reference ensemble is bimodal

as reflected in the results of the principal component analysis
�Fig. 4�b��. The reference ensemble structures projected onto
the principal components show two main clusters. While the
ensemble obtained with one replica shows only small over-
lap with the reference ensemble located in the PC1 region of
less than 2, there is no overlap with the reference ensemble
conformations projected along the PC1 greater than 2. The
PC1 of the ensembles obtained with multiple replicas assume
a wider range of PC1 values indicating the better sampling of
both clusters of reference ensemble structures. The success
of multiple replicas is due to the fact that multiplicity of
replicas allows fluctuations around the � values for indi-
vidual structures, while still constraining the replicas on av-
erage to its input � values. We also projected the first two
principal components onto the contact map of the � repressor
�data not shown�. The contact maps are convenient to visu-
alize on a residue-residue contact basis, which residues are
more reference-ensemble-like and which are not. Most con-
tacts that are formed in the reference ensemble are also
formed equally in the replica ensembles. Structurally, the
main differences between the reference and the replica en-
sembles can be contributed to the different C-terminal helix
contacts.

V. REFERENCE ENSEMBLE RECREATION THROUGH
ENSEMBLE REDUCTION METHODS

A powerful adjunct for the recreation procedure would
be to have some kind of selection filter for the structures
obtained in a simulation. If a postprocessing tool were to
exist that allowed the selection of only those structures that
truly resemble the reference ensemble, the somehow useful-
ness of the inversion procedure would be greatly enhanced.
There are many possible ways of partitioning the ensemble
based on the structural diversity. A simple clustering algo-
rithm that clusters structures obtained with the multiple-
replica Hamiltonian allows separation of these structures into
subensembles. The Fitch-Margoliash clustering algorithm
uses a distance measure between all structures to generate a
phylogenetic tree. The distance parameter d is given by d
=1−q, where q is a normalized pairwise measure of similar-
ity of all structures relative to each other. For the p=1 tran-
sition state ensemble the phylogenetic tree showed clustering
into two main clusters. One cluster contained structures with
greater variation of the radius of gyration and less helical
content. This cluster was not as homogeneous as the other
cluster was. It contained lots of subclusters. The other cluster
showed more compact structures with higher helical content.
The structures of this cluster are denoted the “reduced en-
semble.” It was then confirmed that this ensemble has on
average the same set of � values as the reference ensemble.
This is important in validating the choice of the most domi-
nant subensemble as a valid representation of the reference
ensemble. If the difference between the average � values of
the reference ensemble and the chosen cluster are large, the
cluster cannot be accepted as a valid ensemble. However,
there was no such difficulty for the most dominant cluster.
KS tests with the reduced ensembles were performed to test

FIG. 6. Shown are the reference transition state ensembles viewed from
front ��a� and �e�� and back ��c� and �g�� and the reduced ensembles obtained
with eight replicas for p=1 and 3. The DNA binding region �green� is
disordered in the transition state. For the p=1 case the reduced ensemble
��b� and �d�� and the reference ensemble ��a� and �c�� show the same intrin-
sic features such as secondary and tertiary structures and their average struc-
ture has a relative RMSD of the backbone carbons of less than 2.5 Å. For
the p=3 case both of the reduced ensemble overlayed ��f� and �h�� show
similar structural features than the reference ensemble ��e� and �g��. Pictures
were made with MOLMOL �Ref. 27�.
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whether these ensembles overlapped with the p=1 reference
ensemble. The overlap of the reduced ensemble for multiple
replicas with the experimental p=1 reference ensemble sug-
gested a successful recovery of the reference transition state
ensemble �Fig. 5�a��. The structures of the reduced ensemble
�Figs. 6�b� and 6�d�� exhibited the same global fold with
similar disorder in the DNA binding region as the reference
ensemble �Figs. 6�a� and 6�c��. All structural comparisons
such as root mean square deviation �RMSD�, helical content,
radius of gyration, secondary and tertiary structures, and Z
score from the combinatorial extensions algorithm �the CE Z
score� confirmed that these two ensembles are indeed equiva-
lent on the basis of each of these measures. The phylogenetic
tree was also obtained for structures obtained with the
multiple-replica algorithm for the p=3 case. The tree showed
a main cluster with a few populated subclusters. The struc-
tures of the subcluster whose average �-values resemble the
most the reference ensemble were taken as the reduced en-
semble. The KS test was then performed for the reduced
ensemble. The result is shown in Fig. 5�b�. The probability
distribution function of q overlap of the p=3 reference tran-

sition state ensemble shows a bimodal distribution. The
probability distribution of the reduced ensembles overlapped
well with one peak of the p=3 reference ensemble probabil-
ity distribution. The structures found in the lower-q peak of
the reference ensemble were compared to the structures of
the reduced ensemble. The resultant structures of the replica
simulations �Figs. 6�f� and 6�h�� exhibit similar tertiary and
secondary structures to that of reference ensemble structures
�Figs. 6�e� and 6�g��. Using other order parameters in the KS
test, such as the CE Z score or RMSD, supports the results of
the KS test that the reduced ensemble and the lower-q refer-
ence ensemble are highly similar ensembles. In Figs. 7�a�
and 7�b� we show the overlap distributions of the reduced
ensemble obtained with eight replicas and their correspond-
ing reference ensemble. We note that the CE Z score is
downscaled by a factor of 5.9, which is the resulting score
for the overlap of each of the transition state structures to
themselves. This will normalize the CE Z-score axis to fa-
cilitate better comparison to the order parameter Q. The p
=1 reference ensemble distribution peaks at a Z score of
about 0.67
5.9=3.95 and most structures have a Z score in
the range of 3.65–4.19. A Z score of 3.5 and higher is con-
sidered a criterion that the two structures share the same fold.
We therefore see that in the p=1 reference transition state
ensemble structures and folds are very similar to each other.
The KS test using the CE Z score as a reaction coordinate
shows the high overlap of the probability distributions of the
reduced ensemble and the reference ensemble. The conclu-
sion from the Z-score overlap test is that the two ensembles,
reference and reduced ensembles, are indeed equivalent en-
sembles in terms of representing the same distribution of
global folds. The p=3 reference ensemble showed a bimodal
distribution in the order parameter q with larger variations of
relative structural similarity. As one would expect, nonaddi-
tivity causes the folds in this transition state ensemble to be
less homogeneous than those in the p=1 reference ensemble.
Indeed a wider range of CE Z scores of �2.36–4.10 is found
within the reference ensemble itself. The overlap between
the lower q subensemble of the p=3 reference ensemble and
the reduced ensemble is excellent indicating that the folds in
the reference subensemble are well represented in the re-
duced ensemble and that ensemble recovery judged by CE Z
score and the KS test has been very successful for these
reference structures. The CE Z score is traditionally used for
fold recognition. The probability distribution of the overlap
function shows that the reduced ensemble does have the
same distribution of global folds than the reference en-
semble, which is not surprising since the average � values
are reproduced. For the order parameter q, the dominant sub-
ensemble obtained by the clustering method only represents
part �although most� of the p=3 reference transition state
ensemble. Without knowledge of the energy landscape of the
protein, the reduction method cannot be used to completely
reproduce the reference ensembles. If further low resolution
experiments are known, additional clusters can be identified
that resemble the real gold standard ensemble.

FIG. 7. KS overlap test of the reduced ensemble obtained with eight replicas
and their corresponding reference ensemble using the CE Z score as reaction
coordinate for the p=1 �a� and p=3 �b� ensemble.
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VI. ROBUSTNESS OF THE PREDICTION OF THE
TRANSITON STATE ENSEMBLE FOR THE �
REPRESSOR

To test the robustness of the ability of replica simulations
to recover reference ensembles from imperfect laboratory ex-
periments, we introduced perturbations in the input data re-
sembling experimental errors. To obtain these results we
therefore stochastically changed the set of � values used in
the reconstruction to see whether an ensemble could never-
theless be recreated that was faithful to the gold standard
ensemble. To do this first a new set of � values was created
by randomly picking a � value for each residue from a
Gaussian distribution, having a mean value corresponding to
the gold standard � value with a standard deviation given by
the experimentally expected standard deviation of the mea-
surement of that � value. The magnitude of the errors intro-
duced was of the order of 20% for the p=1 reference en-
semble � values and about 30% for the p=3 reference
ensemble. These new perturbed lists of � values then served
as an experimental input for the replica Hamiltonian. Replica
simulations with these new � values were performed and the
resulting transition state ensembles were compared to the
reference ensemble with the KS overlap test. In the case of
the p=1 transition state ensemble, the overlap distribution of
the ensemble obtained with one replica using the new noisy
� values no longer coincides with the distribution of over-
laps within the gold standard reference ensemble at all �Fig.
8�a��. The overlap distributions show that the two ensembles
are rather different. Simulations using a single replica appear
rather sensitive towards uncertainties in � and fail to result
in successful ensemble recreation.

In contrast, the overlap distributions for ensembles ob-
tained with multiple replicas do show considerable overlap
with the distribution of the reference ensemble even when
errors are introduced �Fig. 8�a�� at least in the p=1 case. The
replicas are able to compensate the uncertainties in � and
partially reproduce the reference ensemble. It is also found
that clustering of structures with the Fitch-Margoliash clus-
tering algorithm yields at least one cluster with secondary
and tertiary structures comparable to the reference transition
state ensemble. The multiple-replica ensemble algorithm
combined with selection through structural clustering there-
fore does successfully reproduce the p=1 reference en-
semble. However, the structures obtained in replica simula-
tions, that should reflect the reference ensemble of the p=3
transition state ensemble, are structurally different from
those in the reference ensemble. The KS test shows that in no
case can the replica simulation algorithm recreate the actual
reference ensemble structures �Fig. 8�b��. The p=3 transition
state ensemble was obtained with a Hamiltonian, that leads
to highly cooperative behavior. The folding under this
Hamiltonian should resemble the folding of a protein that
folds by forming a specific, determined folding nucleus. The
� values in the transition state ensemble are then expected to
be less uniformly distributed with certain core residues being
formed much earlier than the rest of the contacts. The errors
introduced in � are large and can potentially smear out the �
values resulting in a mean-field-like set of � values, which
are more uniformly distributed like the � values of the p

=1 transition state ensemble. This effect of creating a more
uniform set of � values could be a possible explanation, why
recreating the transition state ensemble of the � repressor
obtained with a very nonadditive Hamiltonian is more sensi-
tive to errors in � than is the recreation for the p=1 en-
semble.

VII. CONCLUSION

Scientists often seek to invert hard won experimental
data with the hope to obtain statistically correct structural
ensembles with high fidelity. We see that the ability of suc-
cessfully doing this for structural ensembles of partially
folded biomolecules depends on the algorithm employed and
on the quality of the measured data we seek to recreate.

First consider the p=1 reference ensemble. This en-
semble has a unimodal overlap distribution and corresponds
to a low transition state barrier with structures that are close
in Q being close in free energy. Our simulation results with
the molecular dynamics replica algorithm show that this al-
gorithm can partially recreate the correct reference transition
state ensembles from the set of ensemble-averaged � values.
For the p=1 reference ensemble, structures obtained in simu-
lations with one replica show overlap in the P�q� distribution
with the reference ensemble. The KS test shows, however,
that the distributions of the reference ensemble and the en-

FIG. 8. Overlap distributions for the p=1 and p=3 transition state ensemble
for 1, 2, 4, and 8 replicas. For p=3 the new set of � values generated
structures, that did not overlap with the reference ensemble at all. In the p
=1 case the overlap was smaller when compared to the overlap in Fig. 3.
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semble obtained from the replica algorithm are not the same
despite the fact that the ensembles share the same set of �
values. The one-replica algorithm partially reproduces the
reference ensemble, that has a unimodal P�q� distribution
with large errors in � and few non-native contacts. On the
other hand, the ensembles obtained with multiple replicas
show a bimodal distribution in the probability distribution of
overlap with the reference ensemble with only one peak
strongly overlapping with the reference ensemble. The rather
small overlap suggests that structural clustering could yield a
small cluster of structures, that would better resemble the
reference ensemble. Clustering of the structures with the
Fitch-Margoliash algorithm shows two main basins of struc-
tures. A reduced ensemble obtained from this clustering
analysis reproduces the reference ensemble as measured by
the KS test. These results suggest that when a single replica
suffices to reproduce the reference ensemble, ensemble rec-
reation with multiple replicas does so too.

We also examined how stable the inversion is when er-
rors mimicking those found in experimental determinations
are introduced. This study shows an additional advantage of
introducing multiple replicas. Whereas the one-replica algo-
rithm could not recreate the reference ensembles �Fig. 8�a��
at all from error ridden input, the multiple-replica algorithm
combined with structural clustering analysis is able to pro-
duce a reduced ensemble that has the same structural char-
acteristics as the reference ensemble. Ensembles with low
free energy barrier, from which a set of � values with large
experimental errors is deduced, can only be inverted when
multiple replicas coupled with structural clustering are intro-
duced. For the p=3 transition state ensemble, the advantage
of multiple replicas is also apparent. The � values represent
ensemble averaged quantities. The reference ensemble has a
bimodal probability distribution as well as two clusters of
conformations when observing these conformations pro-
jected onto the principal components. Each of these suben-
sembles has also large fluctuations in their � values. Hardly
any individual structure in the reference transition state en-
semble has the same set of � values as the ensemble average
set of � values. In the inversion algorithm, the single replica
algorithm recovers these individual structures. However, a
successful recreation of the reference ensemble requires sam-
pling of structures, that only on average reproduce the set of
� values. Introduction of multiple replicas allows fluctua-
tions of microscopic �’s referring to these subensembles
while the � values averaged over all replicas still is con-
strained to its experimental value. The KS test and PCA
show that multiple replicas do sample the dominant suben-

semble of the p=3 reference ensemble well. Few structures
sampled the minority reference subensemble �the PC1�2
region, see Fig. 4�, although the multiple replica algorithm
does improve the ensemble recreation over the single replica
case. Knowledge of the energy landscape of folding is only
partially encoded in the � values, thus adding additional a
priori knowledge of the funneling of the energy landscape
should help in inversion fidelity. Further work along these
lines is planned.
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