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Biochemistry involves the quantitative characterization of
molecularmechanisms inbiology.Contextualizing in vitromolec-
ular studies within cellular or human physiology and disease is an
important and often challenging component. Computational
models of reaction networks may be useful in this regard, and
recent advances in commercially and freely available software are
likely to broaden the impact of this approach. This review will
highlight the utility and strategy of integrating biochemical and
computational techniques by describing how such an approach
was taken to analyze the regulation of NF-�B.2

Introduction to Computational Modeling of Cellular
Signaling Networks

Signal transduction networks regulate cellular function and
respond to changes in intra- and intercellular environments.
They control both homeostatic and stimulus-induced re-
sponses. However, the role and importance of individual net-
work components in the function of the network are often dif-
ficult to discern. This is evident when a genetic deletion or
mutation does not show an expected phenotype or when a
pharmacological treatment has surprising effects.
Computational simulations with networks reconstructed in

silico as mathematical equations enable functional analysis of
network behavior and arewell suited to complement in vivo and
in vitro studies (1–4). The utility of integrating experimental
and computational methodologies derives from the iterative
application of each approach to inform the other. Experimental
analyses provide critical insight to select the components and
reactions to include in the computational model and to con-
strain the simulation parameters. In turn, the computational
analyses provide mechanistic insights to drive further experi-
mental analyses.
Studies of the lac operon in Escherichia coli are often cited as

original examples of this integrated approach wherein a simple
set of mathematical equations was sufficient to account for the
transcriptional negative feedback of the lac operon (5). In
eukaryotic systems, developmental, cell cycle control, and cir-

cadian rhythm processes in several organisms have been exam-
ined and validated in silico (6–10). Models of protein kinase
cascades have produced important insights such as amplifica-
tion and temporal fidelity, bistability, and signaling cross-talk
(11).
More recently, advances in systems biology have produced

increasingly complete cellular parts lists that have enabled sta-
tistical modeling to reconstruct large scale molecular networks
(12, 13). However, the resulting models are largely non-quanti-
tative and do not consider the temporal dimension, although
these aspects are essential to biological regulation (4). With
top-down network reconstruction efforts identifying functional
modules, traditional biochemical bottom-up approaches are
critical for providing mechanistic detail. This is where kinetic
computational modeling of molecular networks may function
as an important bridge for these distinct approaches.

NF-�B Transcription Factor Signaling Network

The members of the NF-�B family of transcription factors
are central mediators of cellular responses to inflammatory and
developmental cues (14). Misregulation of NF-�B signaling has
severe health consequences, and untangling the combinatorial
complexity of the NF-�B network is likely to have broad bio-
medical impact in understanding disease and devising thera-
peutic strategies (15). For instance, persistent elevated NF-�B
activity is associated with chronic inflammatory diseases such
as rheumatoid arthritis, asthma, and heart disease andmultiple
forms of cancer (16–18).
There are five NF-�B monomer subunits that form up to 15

NF-�B transcription factor dimers. In unstimulated cells, these
dimers are held in a latent form in the cytoplasm by stoichio-
metric associations with inhibitor proteins I�B�, I�B�, and
I�B� and the recently identified I�B�/p100 isoform (19). Acti-
vation of NF-�B requires phosphorylation-mediated degrada-
tion of the I�B proteins by the IKK complexes. Upon subse-
quent nuclear translocation of freeNF-�B, each dimer activates
overlapping but distinct gene expression programs (20) that
include the genes for some NF-�Bmonomers and I�B proteins
(14). Thus, NF-�B is regulated via combinatorial complexity
that arises from the temporal, stimulus-specific, and cell type-
specific expression of dimers, their activation, and their control
via both negative and positive feedback mechanisms (14, 21).

Constructing a Computational Model of the NF-�B
Signaling Network

A computational model was constructed to examine the
dynamical control of NF-�B signaling (22) and to ascertain the
individual roles of the three canonical I�Bproteins (I�B�, I�B�,
and I�B�) in regulating NF-�B activity in response to the
inflammatory cytokine TNF. The construction of the compu-
tational model required consideration of several questions. 1)
What defines the scope of the model? 2) How much molecular
detail should the model contain? 3) Which computational
modeling technique is best suited? 4)What are the values of the
parameters that govern the network reactions?
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Model Scope—The most basic utility of a model is to predict
relationships between a network stimulus or perturbation
(input) and the resulting cellular response or network behavior
(output). As NF-�B is a pleiotropic transcription factor that
responds to numerous intra- and intercellular signaling events,
the boundaries of the module were selected to allow for exper-
imentally measurable input and output activities (Fig. 1A).
With only a few exceptions, the varied upstream activation
pathways all converge on IKK, and thus, the activity of IKK was
used as the model input. The output of the model is defined as
the presence of free NF-�B dimer in the nucleus (NF-�B activ-
ity). Although much quantitative data exist for the expression
of NF-�B-responsive genes (microarray, qPCR, etc.), themech-
anisms that translateNF-�B activity to gene expression are pro-
moter-specific and are not yet well enough understood to be
included in a computational model. By limiting the scope of the
model to nuclear NF-�B activity, the model is relevant for
NF-�B-responsive genes in general. Themodel, as constructed,
is therefore a predictive tool to relate specific stimulus-induced
IKK activities to specific NF-�B responses.
Model Graininess—Model graininess defines which reac-

tions and which components are described in themodel, with a
very detailed model being fine-grained and a simplified model
being coarse-grained. Even small biological networks can lead
to insurmountable complexity if too much detail is included,

and it is critical to select the mini-
mum level of detail that allows the
questions that drive the project to
be addressed.
As the I�B proteins are the key

mediators of NF-�B nuclear local-
ization, the model describes reac-
tions that govern I�B metabolism,
including synthesis, degradation,
cellular localization, and associa-
tion/dissociation with NF-�B (Fig.
1B). To reduce complexity, some
multistep biochemical events were
combined into single-reaction me-
chanisms based on prior biochemi-
cal knowledge. For example, I�B
proteins are known to be rapidly
degraded via the ubiquitin-depend-
ent proteasome pathway following
IKK-mediated phosphorylation. As
only IKK-mediated phosphoryla-
tion had been found to be rate-lim-
iting, the model employed a single
IKK-dependent protein degrada-
tion reaction in lieu of multiple
explicit reactions governing the ub-
iquitin-mediated proteasome path-
way. Similar reductions weremade in
removing transport machinery for
cellular shuttling events; combining
mRNA synthesis, processing, and
cytoplasmic localization into a single
reaction; and treating protein transla-

tion as a single-step process.
Mathematical Modeling Methodology—There are several

mathematical approaches that have been found to be useful for
modeling biochemical reaction networks. Boolean modeling
based on the electronics-derived concept of AND and OR gates
(and many others) is useful when analyzing how multiple inputs
cooperate to produce an output, as for example in the combinato-
rial transcription factor control of gene expression (23). Flux bal-
ance analysis has been used to predict how networks alter their
steady-state behavior to achieve a particular physiological objec-
tive, as inmetabolism controlling bacterial cell growth (24). In cell
signaling,however, responses to stimuli areoftennon-steady-state
(e.g. transient) events and therefore necessitate a mathematical
approach that can calculate the time-dependent changes in the
concentration or activity of network components. ODEs that uti-
lize mass action kinetics and rate constants are often used to
describe dynamic cell signaling. Furthermore, in some regulatory
networks, when molecule numbers are low, the mathematical
model must account for the fact that molecular processes are not
graded, but are essentially stochastic. Such molecular noise can
play significant roles as exemplified by cell fate decision making
and the viral latency/lysis switch noise (25, 26).
In modeling NF-�B activity, both homeostatic and stimu-

lated states are of interest. Because the molecule numbers
are high (�100,000 NF-�B dimers/cell), a system of ODEs

FIGURE 1. A, the cell responds to external and internal stimuli through complex signal transduction networks
that utilize distinct signaling modules to exact specific cellular responses. The NF-�B signaling module is one
such key mediator. IKK is activated in response to cellular stimuli and causes accumulation of the NF-�B
transcription factor in the nucleus that drives stimulus-specific gene expression programs. Some of the many
connections between stimuli and cellular responses are shown and are illustrative of the combinatorial com-
plexity inherent in the cellular signal transduction network. JNK, Janus kinase; ERK, extracellular signal-regu-
lated protein kinase. AP-1, activator protein 1; ATF, activating transcription factor; IRF, interferon regulatory
factor. B, schematic diagram of the components and reactions that are described within the NF-�B computa-
tional model. Distinct reactions exist for each I�B isoform (I�B�, I�B�, and I�B�) and are controlled by isoform-
specific reaction rate constants. Reactions control synthesis and degradation of the I�B proteins; association
and dissociation of I�B proteins, NF-�B, and IKK; and cellular localization. NF-�B is a product or reactant in
multiple reactions and, for clarity, is included once in the middle of the diagram. The temporal profile of IKK
activity is used as the model input. C, two examples of the 24 ODEs that are contained within the NF-�B model.
The flux for each component is calculated via mass action kinetics by subtracting the sum of the reactions that
remove the component from the sum of the reactions that produce the component. Shown first is the equation
governing I�B� mRNA expression, which contains the reactions of constitutive and NF-�B-inducible transcrip-
tion (Txn) and mRNA degradation (Deg.). Shown second is the equation governing the amount of free NF-�B
protein in the nucleus (NF�Bn), which is controlled by association and dissociation with I�B proteins, protein
degradation of NF-�B-bound I�B proteins, and cellular localization reactions.
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rather than the more computationally demanding stochastic
approach was chosen to describe mass action kinetics (22).
Examples of the ODEs that represent the rate of change in
the I�B� mRNA and the nuclear NF-�B activity are shown in
Fig. 1C. Each ODE represents the flux for one component as
a function of time, and the model contains 24 components
and ODEs.
These mathematical equations can be written and solved

with the help of programs such as Mathematica� (Wolfram
Research, Inc.) and MATLAB� (The MathWorks, Inc.) that
offer suites of numerical solvers for solving systems of ODEs.
Models may also be written using Systems Biology Markup
Language (SBML) via one of the many software packages
that permit construction and simulation of these models,
like MATLAB SimBiology� (The MathWorks, Inc.) and
CellDesignerTM (The Systems Biology Institute, Tokyo,
Japan). Some of these tools also have graphical interfaces
that enable model construction simply by drawing a reaction
network and entering rate constants. These applications
represent a step toward making modeling as user-friendly as
other bioinformatic tools, such as those for nucleotide and
peptide alignment (27).
Model Reaction Rate Constants—The equations of a model

constitute the model structure as they define the connectiv-
ity between components. The rate constants quantify the
connectivity, and parameterizing a model (defining the val-
ues of the rate constants) is the final and often the most
difficult step in model construction. Ideally, all values would
be measured, but in practice, this is not always feasible, and
models contain rates that are measured, experimentally con-
strained, or estimated/fit. For instance, the rates of protein-
protein interactions, cellular localization, and protein half-
lives are measurable quantities. Other values are difficult to
directly measure or are composite parameters as a result of a
coarse-grained model structure. Related experiments can
constrain the values of some of these rates. For example,
measurements of mRNA and protein abundances can con-
strain the values of synthesis parameters when coupled to
measurements of degradation rates. Finally, the module
input/output relationship can be used as a constraint to fit
the remaining parameter values such that the model recapit-
ulates this relationship.
A balance must be achieved during the parameterization

process to avoid under- or over-constraining the model. If too
few values are experimentally determined, theremay be several
possible parameter sets that recapitulate network behavior, but
conversely, when too many experiments are done, the model
may be incapable of doing so. In these cases, the data that can-
not be accounted for by the model may motivate subsequent
studies and in turn result in a revised version of the model.
In the case of theNF-�B signalingmodule, a rich literature of

biochemical rate constants derived from in vitromeasurements
and quantitative cell biology meant that one-third of the 73
parameters were known with a high degree of confidence, one-
third were significantly constrained by literature data, and only
the remaining third had to be derived from parameter fitting.
To this end, experimental data from three cell lines, each
expressing only one of the three I�B proteins (double knock-

outs), were used as fitting constraints. The supplemental data
reported by Hoffmann et al. (22) contain an extensive account-
ing of the sources for each reaction rate constant.

Utility of Computational Modeling

There have been numerous studies that have expanded upon
and/or refined the original NF-�B model (19, 22, 28–34). In
addition, other studies have reduced the complexity of the
model to focus only on critical reactions (35–37). In our view,
each modification ought to be motivated by specific biological
questions. In this context, we consider the utility of computa-
tional modeling more generally.
Sufficiency Test—In its simplest form, a mathematical model

is the summary of ourmolecular ormechanistic knowledge of a
biological process. Amodel that fails to recapitulate the cellular
response (network behavior) indicates that our knowledge of
the molecular mechanisms is insufficient. Indeed, further sim-
ulations can inform experimental studies to look for missing
mechanisms. In this way, the modeling process is integrated
with experimental analyses, and iterative tests of sufficiency can
be used to increase the scope and detail of both the model and
our biochemical understanding.
Emergent Properties—A network of molecular reactions

has functional characteristics that are not evident from
studying a single reaction. These characteristics are called
network emergent properties. Network behaviors such as
dose responses, dynamic negative feedback regulation, com-
pensation between redundant or overlapping mechanisms,
cross-talk between stimuli, and functional memory are
examples of emergent properties that can be addressed
through mathematical modeling.
Perturbation Studies—One of the advantages of having a vir-

tual representation of the biochemical network is that in con-
trast to biological experiments, virtual experiments can be done
systematically, cheaply and fast. One simple strategy is to use
simulations of knockouts, in which specific components are
removed from the model, to discern the effects (phenotypes)
and to reveal emergent properties, including compensation
mechanisms. For example, by removing I�B� from the model,
its role in post-induction repression of NF-�B was assessed
(22).
Similarly, parameter sensitivity analysis involves simulating

themodel repeatedly with a range of values for one ormore rate
constants to identify the contribution each reaction makes to
the network behavior. Unlike for linear reaction pathways,
where the rate-limiting step is the slowest reaction, complex
signaling networks may have non-obvious rate-limiting steps.
In particular, the rate-limiting step often depends on the
homeostatic state of the cell and the stimulus used. The appli-
cation of parameter sensitivity analyses to biomedical sciences
can identify which reactions are sensitive to modulation within
the ranges achievable by genetic or pharmacological tools. Fur-
thermore, it may also provide insight into how a drug with a
known molecular target within the network will affect the net-
work response. Simulations of the model with the drug-in-
duced perturbation(s) that do not recapitulate observed exper-
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imental results may suggest that the drug has unknown targets
within the cell.

Insights Derived from Analyses of NF-�B Computational
Models

Parameter Sensitivity Analysis—In the first of several exam-
pleswe describe here, parameter sensitivity analysis was used to
investigate the relative importance of the four distinct I�B deg-
radation reactions included in the model, of which only the
IKK-mediated degradation of NF-�B-bound I�B had been
extensively studied (33). TNF signaling was simulated using a
range of I�B degradation rates, and the results not only con-
firmed the critical role of the well studied reaction but also
revealed that the IKK-independent degradation of free I�B is
also crucial (Fig. 2A). These results prompted experimental
studies to more accurately measure the I�B degradation rate
constants and to characterize the biochemical mechanisms
controlling the free I�B degradation pathways. Inclusion of the
new degradation rate constants in a revised model resolved a
discrepancy in the original that predicted a much greater pool
of free I�B protein than evident in experimental studies (33).

Sufficiency Test—In another study,
a failed sufficiency test led to the
discovery of a novel feedback regu-
lator (32). Negative feedback of
NF-�B was initially thought to
involve inducible expression of only
the I�B� isoform (38), which drives
severe oscillations in NF-�B activity
when overexpressed or in cells defi-
cient in I�B� and I�B� (22, 28, 31).
Wild-type cells show dampened
oscillations, and the original model
attributed the dampening function
to I�B� via a mechanism whereby it
stabilizes nuclear localization of
active NF-�B (39). This mechanism
was later found not to be present in
the fibroblast cell type from which
the model was derived, but without,
it the model was insufficient to
dampen oscillations (32). To add-
ress this insufficiency, we re-exam-
ined I�BmRNAand protein expres-
sion profiles in response to TNF and
found, unexpectedly, that like I�B�,
I�B� is a strongly inducible NF-�B
target gene. However, inducible
I�B� expression is temporally de-
layed by 45 min with respect to
I�B�, and including this delay in the
computational model revealed that
I�B� feedback counteracts I�B�-in-
duced NF-�B oscillations (Fig. 2B)
and suggested that there is dynamic
interplay between the two anti-
phase negative regulators to achieve
steadied late phaseNF-�Bactivity in

response to inflammatory stimulation.
DynamicModel Inputs—In a third example, dynamic control

of NF-�B was investigated by utilizing a library of diverse IKK
inputs to probe whether the model can achieve stimulus-spe-
cific NF-�B activity (34). Different stimuli activate distinct
NF-�B-responsive gene expression programs, and it was
hypothesized that stimulus-specific IKK activitymight regulate
these different responses. An extensive library of theoretical
IKK inputs was constructed and used to probe network behav-
ior. These simulations revealed, among other findings, that
NF-�B activity is relatively insensitive to the amplitude of early
(first phase) IKK activity but very sensitive to small differences
in late (second phase) IKK activity. This insight led to the pre-
diction that late activity of IKK is tightly controlled in the cell,
prompting experimental studies of negative and positive feed-
back loops that control late IKK activity in response to the
inflammatory stimuli lipopolysaccharide and TNF.
Analyses of Multiple Negative Feedback Regulators Reveal

Signaling Cross-talk—In a fourth example, the model was
expanded to include a newly discovered I�B activity, I�B�, to
account for NF-�B/RelA activation in response to non-canon-

FIGURE 2. A, parameter sensitivity analysis reveals the importance of a second I�B protein degradation mech-
anism (33). Upper, schematic diagram of the four distinct I�B degradation reactions; lower, “spider charts”
showing the sensitivity of the model to perturbations of each of the four degradation reaction rate constants
from 0.01� to 100�. Each point represents the average of the first hour of NF-�B activity in model simulations
with the parameter multiplier indicated on the x axis. The response of the wild-type system (1� multiplier) is
shown in the middle of each plot. Upper plot, IKK-dependent I�B degradation rates r1 (blue) and r4 (light blue);
lower plot, IKK-independent I�B degradation rates deg1 (red) and deg4 (pink). B, I�B negative feedback regu-
lates oscillations in NF-�B activity (32). Upper, simulation results with chronic TNF stimulation in Model Version
1.0 (22) with (blue) or without (light blue) I�B�-regulated NF-�B nuclear export; middle, quantitation of I�B�
(pink) and I�B� (red) mRNA expression in response to chronic TNF stimulation in wild-type fibroblast cells as
measured by RNase protection assay; lower, simulation results in an updated model (Version 1.2), containing an
NF-�B-inducible I�B� synthesis reaction, in wild-type (blue) versus I�B�-deficient (light blue) model systems.
NF�Bn, free NF-�B protein in the nucleus. C, the I�B�/p100 I�B isoform mediates cross-talk between inflamma-
tory and developmental signaling pathways (19). Upper, simulation results in Model Version 3.0 show that I�B�
represents a small fraction of the total I�B pool in naïve cells but is increased following priming by transient
inflammatory (TNF) stimulation; middle and lower, simulations and cell culture measurements of NF-�B activity
by electrophoretic mobility shift assay, respectively, in naïve (light blue) versus TNF-primed (blue) cells in
response to developmental (lymphotoxin-�) stimulation. LT�R, lymphotoxin-� receptor.
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ical signals that play a role in developmental processes such as
lymph node development via the lymphotoxin receptor (19).
Because experiments showed that I�B� mRNA expression is
inducible by inflammatory stimuli, we used computational sim-
ulations to determine whether and under which conditions
I�B� could provide signaling cross-talk between inflammatory
and developmental pathways. Resting cells contain only little
I�B�-bound NF-�B and thus respond weakly to developmental
cues. However, upon inflammatory stimulation, I�B� expres-
sion is induced, and subsequent developmental stimulation
through lymphotoxin (LT��) shows hyperactivation of NF-�B
(Fig. 2C). Experimental studies confirmed themodeling predic-
tion and showed that this effect lasts for some time, effectively
constituting a form of cellular memory. Together, they sug-
gested that the two signaling pathways, previously thought to
be distinct, engage in cross-talk that has an important physio-
logical and pathological function in cellular contexts where
both stimuli are present.

Conclusions

Asbiochemists interested inmolecularmechanisms,wehave
found that mathematical modeling enriches our experimental
studies. At a minimum, model construction makes us more
aware of all the molecular mechanisms that may be involved in
a physiological process. When a model is functioning for one
task but not for another, itmotivates further experimental stud-
ies to identify novel mechanisms. Computational simulations
allow us to explore the functional importance (and at best,
physiological relevance) of specific mechanisms and, maybe
most strikingly, have provided a tool to address the dynamic or
kinetic control of signaling that static wiring diagrams of the
network cannot provide. As a result, our understanding of the
regulation of NF-�B through multiple I�B proteins is more
complete and may inform similar systems biology approaches
with upstream, downstream, or parallel network modules that
control inflammatory and immune responses.
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