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ABSTRACT: We investigate how post-translational phosphorylation modifies the global conformation of a
protein by changing its free energy landscape using two test proteins, cystatin and NtrC. We first examine
the changes in a free energy landscape caused by phosphorylation using a model containing information
about both structural forms. For cystatin the free energy cost is fairly large indicating a low probability
of sampling the phosphorylated conformation in a perfectly funneled landscape. The predicted barrier for
NtrC conformational transition is several times larger than the barrier for cystatin, indicating that the
switch protein NtrC most probably follows a partial unfolding mechanism to move from one basin to the
other. Principal component analysis and linear response theory show how the naturally occurring
conformational changes in unmodified proteins are captured and stabilized by the change of interaction
potential. We also develop a partially guided structure prediction Hamiltonian which is capable of predicting
the global structure of a phosphorylated protein using only knowledge of the structure of the
unphosphorylated protein or vice versa. This algorithm makes use of a generic transferable long-range
residue contact potential along with details of structure short range in sequence. By comparing the results
obtained with this guided transferable potential to those from the native-only, perfectly funneled
Hamiltonians, we show that the transferable Hamiltonian correctly captures the nature of the global
conformational changes induced by phosphorylation and can sample substantially correct structures for
the modified protein with high probability.

Protein phosphorylation is one of the most important
intracellular control mechanisms (1). In both eukaryotic and
prokaryotic cells, phosphorylation is a key step in cell cycle
control, gene regulation, learning and memory (2). Nowadays
it is believed that about a third of the proteins in mammalian
cells are phosphorylated at one time or another (3). Com-
munication in the cell by means of phosphorylation is rapid,
reversible and does not require the slow production of new
proteins or degradation of existing proteins. Ultimately the
activities of proteins that are modified by phosphorylation
must be traced to changes in the protein’s conformation (4-
6) that are induced by modifying the energy landscape. While
native ensembles possess numerous conformational substates,
the landscapes of most proteins are highly funnel-like. In
many cases, phosphorylation modulates the stability of two
near degenerate but structurally distinct conformational
ensembles on the landscape allowing the same protein
molecule to carry out different activities in the cell at different
times. By modulating this near-degenerate landscape, phos-
phorylation can act as a molecular switch, turning a specific
conformation dependent activity on or off by tipping the
balance of the population between the two ensembles.

Upon phosphorylation, a phosphate group becomes co-
valently attached to the side chain of a serine, threonine,
tyrosine or histidine residue. Much like the more labile

changes due to pH, the change of electric charge in a specific
residue through phosphorylation can have several different
structural consequences: it can induce local and/or global
conformational change between discrete completely folded
configurations, or induce order to disorder or disorder to
order transitions (7). Sometimes the effects of phosphory-
lation on the structure of the protein appear to be small but
further recognition events essential to function, such as
binding, can be profoundly affected.

To illustrate how energy landscape ideas can be used to
think about phosphorylation and to devise predictive algo-
rithms, we present a theoretical study of how phosphorylation
modifies the global (8-10) rather than local (11-13)
structure of two different proteins, the cysteine proteinase
inhibitor cystatin and the receiver domain of the bacterial
enhancer-binding protein NtrC1 (nitrogen regulatory protein
C). These two different systems are small enough for detailed
theoretical analysis but also have been structurally explored
in the laboratory providing thereby the basis for a compara-
tive study to elucidate the generality and specificity of
phosphorylation effects.

Cystatins are inhibitors of cysteine proteinases, which
destroy proteins by hydrolysis and hence are important in
protein degradation (PDB codes 1A67, 1A90) (14). Chicken
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cystatin has been structurally characterized in both an
unphosphorylated and phosphorylated form. The phospho-
rylated residue, Ser80, is located in a flexible region of the
protein, which is readily accessible both to protein kinases
and to phosphatases. Serine phosphorylation sites in many
proteins are often found to be flexible or disordered in
structural studies. Phosphorylation in intrinsically disordered
regions of the protein commonly results in the ordering of
the structure in the vicinity of the phosphorylation site (15).
Unphosphorylated cystatin is a five-strandedâ-pleated sheet
which is twisted and wrapped partially around a five-turn
helix. When cystatin becomes phosphorylated, moderate
structural changes occur. The overlay of the mean NMR
structures of phosphorylated and unphosphorylated cystatin
show an rms deviation between the structures of 2.7 Å.
Cystatin thus serves as a paradigm for a system having
minimal structural change induced through phosphorylation
in a flexible loop region.

A more dramatic change upon phosphorylation in terms
of structure occurs in another well characterized system, the
receiver domain of NtrC. The receiver domain of NtrC is a
conformational switch found in a bacterial “two-component’’
regulatory system (PDB codes 1DC7, 1DC8) (16). Upon
phosphorylation twoâ-strands as well as twoR-helices are
displaced away from the phosphorylation site and addition-
ally one helix is rotated axially. The overlay of the average
NMR structures of the unphosphorylated and phosphorylated
conformation of NtrC shows larger rms deviation between
the structures of about 3.3 Å. The amplitude of the change
is thus slightly larger than for cystatin. NtrC has been
regarded as a model for a conformational switch (17), in
which a “large’’ conformational change is induced upon
phosphorylation. Clearly larger proteins can exhibit still
larger changes in an rms sense, owing to a greater lever arm
for hinge motion in them.

The aim of the current study is to elucidate how phos-
phorylation causes these observed changes in protein con-
formations. First we examine the free energy profiles that
would be obtained by assuming an ideal landscape having
as little frustration as possible. This landscape for the
phosphoprotein is constructed by utilizing the information
about the structures of both phosphorylated and unphospho-
rylated native forms. Such a model yields the free energy
difference of the forms that would be expected if only the
native contacts were to contribute to the energetics. Since
the conformations and hence the contact maps of the
unphosphorylated and the phosphorylated proteins in our
study are already known from experiments, we can construct
such a structure based Hamiltonian having native-only
interactions for molecular dynamics simulations to obtain
conformations and energies of the proteins along the reaction
coordinate. This is a “vanilla’’ Hamiltonian because it is
topology based, not singling out any interactions as especially
significant. This model treats the two different sets of input
native contacts, those for the unphosphorylated conformation
and those for the phosphorylated one, as independent. We
can more directly extract changes in the free energy profile
using the free energy perturbation method. Next, a principal
component analysis of the contact maps of the simulated
ensembles allows us to find the dominant components of
the phosphorylation induced change and to visualize the
effect that phosphorylation has on a residue-residue contact

map. The contact maps of the test proteins in the unphos-
phorylated and phosphorylated forms show that many of the
contacts formed by the phospho residues for the test proteins
are preserved, suggesting the effect of phosphorylation
primarily lies in the long-range forces. This observation
allows us to address a rather practical issue: Instead of
needing structural information on both forms, can one predict
the likely conformational changes that should occur when
only one structural form is known? For example, given
structural information only about the unphosphorylated
protein and the sequence information of which particular
residues are susceptible to phosphorylation, can one predict
the dominant conformation of the phosphorylated protein?
For such predictions, obviously perfect funnel, native topol-
ogy based models will not suffice. Since long-range interac-
tions are expected to be dominant however, we can construct
a new guided structure prediction Hamiltonian by using local
structural information known from the unphosphorylated
protein for residue interactions separated by a few residues
(12 in this case), but use a transferable structure prediction
Hamiltonian (AMH) (18, 19) having a heterogeneous through
space potential for residues that are more than 12 residues
apart in sequence. The transferable long-range potential while
transferable has been shown to yield a reasonably funneled
potential which has been optimized based on a large set of
generic protein structures to successfully predict the folded
state of proteins of size up to 180 residues. Its predictive
power has been well documented (20). Additionally it is
possible to construct a new potential in this format to evaluate
the interactions of the phosphorylated residues based on the
same form.

To obtain the Hamiltonian for phosphorylated proteins
from that which has been optimized for normal, unphos-
phorylated amino acids, we earlier postulated that we
can treat the interactions involving the phosphorylated
residue as those of a “supercharged’’ glutamic acid residue
(21). The energetic interactions of the phosphorylated residue
with other residues are replaced with enhanced interactions
of the type ordinarily used for a glutamic acid residue with
the corresponding residues (21). Since the energy land-
scape of the unphosphorylated protein is known and the
contact maps of the test proteins indicate there is a consider-
able overlap of contacts between the unphosphorylated and
phosphorylated conformations, we preserve the native fo-
cused associative memory terms biased toward the as-
sumed known unphosphorylated structure for residues that
are less than 12 residues apart in sequence space but use
the transferable potential with a “supercharged glutamate’’
for the more distant interactions. The Hamiltonian we
have constructed in this way equips us with an energy
function that should reliably mimic the local structure of
the unphosphorylated protein, but that nevertheless plausibly
treats the effects of the long-range forces on the confor-
mation of the protein. We show this Hamiltonian correctly
predicts many features of the conformational changes
observed in the phosphorylated protein. To document
that this can be done, we set up simulations with different
strengths of the charge interactions for the phosphory-
lated protein, and then we project the conformations ob-
tained in these simulations onto the first two principal
components obtained earlier using the “vanilla’’ native-
structure-based Hamiltonian. We also show more directly
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that structures rather close to the NMR structures can also
be sampled.

METHODS

In order to explore the issues raised above, we studied
four Hamiltonians based on the native configurations of the
test proteins,Hu, Hp, H * u, and H * p. We show how to
construct the native-based HamiltoniansHu, Hp in the first
subsection. These two Hamiltonians are based on the
information of the experimentally determined native struc-
tures of the unphosphorylated or phosphorylated form of the
proteins. Note that throughout the current study, we use the
subscriptsp and u to indicate the phosphorylated or the
unphosphorylated form respectively. We then describe how
to obtain the free energy profiles from the conformations
sampled withHu andHp and describe a principal component
analysis based on the contact maps of these conformations.

Finally we describe the construction of structure prediction
HamiltoniansH * u and H * p, both of which are based on
transferable interactions using the long range interaction
parameters optimized for generic structure prediction but that
use information about the native conformation of the
unphosphorylated form to encode the short- and intermediate-
range interactions. Note that neitherH * u or H * p contains
any experimental information of long-range interactions
found in the unphosphorylated form; neitherH * u or H * p

directly makes use of any (short-, intermediate-, or long-
range) experimental information on thephosphorylatedform
at all.

We also detail how we define various physical quantities
for monitoring structural ensembles, such as order parameters
and configurational free energy, which we adopt to analyze
the results of all simulations based on these four Hamilto-
nians.

1. NatiVe-Structure-Based Simulations.Simulations of the
folding dynamics of cystatin and NtrC were performed with
an off-lattice native-structure-based potential. The Hamilto-
nian used in this study contains a basic backbone Hamiltonian
and a contact potential

and depends on the locations of theCR, Câ and oxygen atoms.
The indexu/p is a simplified notation for the two cases,
namelyu or p. The remaining backbone atom positions can
be calculated assuming ideal backbone geometry. The
backbone potentialHbb constrains the backbone to have
chemically and physically acceptable conformations (22).
The backbone potential is given by

The Ramachandran potentialHψφ provides a good fit of the
backbone torsional angles based on the statistics of protein
structural database. The chirality potentialHø biases the
protein chain into theL-amino acid configuration. The
algorithm SHAKE constraints for the heavy backbone atoms
along with three quadratic potentials provide for backbone
rigidity and planarity. To complete the picture of stere-
ochemically allowed protein backbones, an excluded volume
potential is applied to the oxygen and carbon atoms of residue
i andj. This potential applies when the heavy atoms approach

within 3.5 Å for residues close in sequence space such that
(j - i) < 5, and 4.5 Å for (j - i) g 5. Theλ-terms scale the
interactions of the individual backbone potentials.

The contact termHc ) Hc,S + Hc,M + Hc,L is an
associative memory term (23). Through its guidance, the free
energy will reach a minimum at the basin of the given native
PDB structure. Since there are several structures of cystatin
deposited in the PDB, all these structures were used as
memory terms for the simulation. The functional form of
the contact term is given by

The sum runs over all carbon atom pairs (CR-CR, CR-
Câ, Câ-CR, Câ-Câ) having a sequence separation of at least
three residues. The functional form of the interactions of the
carbon atoms in this potential are Gaussian centered at the
native distancerij

N at and with a width ofσij ) |i - j|0.15Å.
TheHc potential depends on the sequence separation|i - j|
of the residuesi and j. We divide the energy into three
different proximity classesx(|i - j|): short range (S) for
|i - j| < 5, medium range (M) for 5e |i - j| e 12 and
long range (L) for|i - j| > 12. Theγ[x(|i - j|)]-terms are
weighted such that the energies in each proximity class
x(|i - j|) are equal to each other. Also the energies of any
contact in each proximity class are equal for all contacts
formed. The total energy of the Hamiltonian is scaled to be
4N, whereN is the number of residues of the protein. The
unit of energy can then be denoted asε and is defined in
terms of its native state energy coming from the contact term
Hc only,

The simulation protocol is as follows: For each protein
twenty constant temperature runs were performed with the
structure based Hamiltonian. The constant temperature runs
sampled 800 independent structures each spaced at intervals
at about 1µs corresponding to a trajectory of about 1 ms in
physical time. A total of 16000× 2 × 2 ) 64000 structures
were obtained for various temperatures for the unphospho-
rylated protein as well as for the phosphorylated protein. The
key thermodynamic quantity desired from the simulations
is the free energy as a function of reaction coordinateQ and
temperature. The normalized collective coordinateQ mea-
sures the similarity of two conformations A and B to each
other.

2. Free Energy Perturbation Method.We directly examine
how phosphorylation changes the free energy profiles. We
start by analyzing the sampling snapshots obtained in
simulation with each of the two Hamiltonians. After project-
ing the ensembles to the desired collective coordinatesr )
{ r1,r2,...}, the probability distributionF(r) ) N(r)/Ntot is
computed for a total ofNtot snapshots. We can then derive

Hu/p ) Hbb + Hc,u/p (1)

Hbb ) λψφHψφ + λøHø + λexHex + λharmonicHharmonic (2)

Hc,u/p ) -ε ∑
iej-3

γ[x(|i - j|)] exp[- (r ij - r ij
N at,u/p)2

2σij
2 ] (3)

ε )
〈Hc〉
4N

(4)

Q )
2

(N - 1)(N - 2)
∑

i<j-1

exp[- (r ij
A - r ij

B)2

2σij
2 ] (5)
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straightforwardly the free energy profileF(r) ) -kBT
ln(F(r)/F0), where F0 is a uniform distribution, for the
unphosphorylated and phosphorylated conformations. We are
interested in the difference of the two free energies, so we
subtract these to obtain the difference∆F(r) ) Fp(r) -
Fu(r).

In the current case we use two different folding order
parametersQu andQp as the collective coordinates, i.e.,r )
(Qu,Qp). We assign to each snapshot two numbers, the order
parametersQu and Qp, which measure how similar an
individual snapshot obtained in the MD simulations is to the
native structure of the unphosphorylated or the phosphory-
lated conformations respectively. Simulations with the native-
structure-based Hamiltonians bias the sampled conformations
strongly toward the native structure. Performing a simulation
with one of the two Hamiltonians, sayHu, results in greater
sampling of structures with highQu but sparse sampling of
structures with highQp.

Instead of using a brute force approach of performing a
large amount of simulations to ensure acceptable sampling
of the 2D reaction coordinate space, we use the free energy
perturbation method (24) to obtain the free energy difference
directly. Thus to calculate the free energy difference
∆F from the sampling of the unphosphorylated Hamiltonian
Hu, we not only project the sampled conformations to the
collectiveQ coordinates but also record, for each conforma-
tion, what the energyEu ) 〈Hu〉 of the unphosphorylated
system is and also what the energyEp ) 〈Hp〉 of a
phosphorylated system with thesameconformation would
be. We then perform the statistics on the raw moments of
the energy difference〈∆Ek〉(r) ) 〈(Ep - Eu)k〉(r). The free
energy difference of the two systems is then simply given
by the cumulant expansion equation, i.e.,

Here Cj is the jth order of the expansion. We haveC1 )
〈∆E〉, C2 ) 〈∆E2〉 - 〈∆E〉2, etc.

3. Contact Map Principal Component Analysis.We also
use a principal component analysis (PCA) based on contact
maps to visualize the conformational changes induced by
phosphorylation. The more commonly used principal com-
ponent analysis based on the diagonalization of the Cartesian
coordinates is less useful for our purposes because the change
in the energy is only weakly related to the changes in the
linear Cartesian distances. This mismatch is due to the fact
that in phosphorylation the large conformational changes are
generally of a magnitude beyond the simple vibrational-like
fluctuations of the Cartesian coordinates. To capture properly
the conformational changes, it is necessary to employ a set
of detailed, site specific, and structure based reaction
coordinates that do correlate with the energy. The global
order parametersQu or Qp do not suffice for the detailed
description. We select a set of coarse-grained yet local-
information-revealing degrees of freedom encoded in the
contact map. This is the simplest site specific measure
properly capturing the structure of a conformation while
relating directly to the energy. A contact between residuesi
and j is considered to be formed (given the value of 1 as
opposed to 0 when no contact is formed) when the distance
of the respectiveCâ atoms is less than 6.5 Å. For each

snapshot obtained in the molecular dynamics we compute
the contact map. The contact principal component analysis
(25) reflects the correlations between different contact
forming events. The covariance matrix to be diagonalized
is not based on the linear Cartesian coordinates but rather
on a contact map correlation function

This “hypermatrix’’ encodes how an instance in which
residuesi andj form a contact correlates to an instance where
residuesk and l form a contact. To further facilitate the
analysis, we coarse-grained the contacts by grouping neigh-
boring residues into groups of four residues, i.e., a coarse-
grained contract matrix is calculated for each snapshot, with
each of the independent elements being either 0 or 1. The
coarse-grained contacts are reduced in number to 27× (27
- 1)/2 ) 378 and 31× (31 - 1)/2 ) 465 for cystatin and
NtrC respectively. The resulting reduced covariance matrices
of dimension 378× 378 and 465× 465 are diagonalized,
and the eigenvalues are calculated. The two most dominant
principal components (PC) are plotted.

4. Linear Response Theory (LRT).As an alternative to the
detailed sampling of the predictive Hamiltonian in the next
subsection, we can use the linear response theory to see how
phosphorylation should induce conformational changes.
Linear response theory suggests that the magnitude of the
conformational changes is a convolution of the strength of
the sequence specific perturbation times the susceptibility
of the corresponding degrees of freedom to make such
changes (26, 27). Statistical thermodynamics shows the
coefficient of the response of a system under small external
change is also linearly related to the fluctuations of the
system sampled at equilibrium. The most commonly known
manifestation of this relation explains how the heat capacity,
a measurement of how energy changes with the temperature
change of a system, is related to energy fluctuations.

In our case, the linear response theory describes the
changes of the contact map using a relation of the form

where δVk,l is the matrix of contact energy change upon
phosphorylation. The details ofδV will be spelled out in
detail in the next subsection. Nevertheless it is easy to see
thatδV is a very local property in the contact representation.
For example, say residue 7 is the only residue that undergoes
phosphorylation, we will then only have nonzero contribu-
tions ofδV for the elementsδVk,l if k ) 7 or l ) 7, otherwise
δVk,l ) 0. By bridge in with the hypermatrixCi,j,k,l, we can
see how the changes of contact energy between the pairi-j
are correlated with the changes of contact probability between
the pairk-l at equilibrium. Linear response analysis yields
the change in probability of forming a certain pairi-j when
all the input contact energies change. SinceδV is very local,
i.e., is an extremely sparse matrix, it follows that the
structural responses are primarily a combination of the largest
eigenvectors of the diagonalization of the hypermatrixC (the
top PCs). The dominance of these modes reflects the fact
that those eigenvectors have largest amplitude of fluctuation.
The linear response theory is an efficient method to give a
quick estimate of the changes caused by a perturbation. It is

Ci,j,k,l ) 〈(mij - 〈mij〉)(mkl - 〈mkl〉)〉 (7)

〈δqi,j〉 ) ∑
k,l

Ci,j,k,l 〈δVk,l〉 (8)

∆F(Qu,Qp) ) -∑
j)1

[(-â)j/j!]Cj(Qu,Qp) (6)
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more accurate for systems that undergo small changes than
for systems that undergo complicated, more involved changes.

5. Modeling Tertiary Structure Effects of Phosphorylation.
Can one predict the conformation of the phosphorylated
protein given knowledge of the folding landscape of the
unphosphorylated protein only and the changes in the
modifiable residues? As a first step to answer the prediction
question, we developed a set of HamiltoniansH* based on
the information of the unphosphorylated form alone. We use
the superscript/ to denote the energy functions that are
transferable to distinguish the two sets. We first compare
the difference of the ensembles generated byHp andHu and
the difference of the ensembles generated byH* p andH* u.
We thus constructed a specific Hamiltonian constructed in
the following form:

The only difference betweenH*u/p andHu lies in the long-
range energy terms. All three Hamiltonians share the same
backbone and the same short and intermediate contact terms
with each other. HereHc,S+M,u is given by eq 3 and summed
only over residues that are separated by twelve or fewer
residues in sequence space. This term biases the local
secondary structure of the protein by having only the native
interactions of one of the forms and hence yields largely
native secondary structure. The tertiary structure of the
protein follows thus from the contact energy term. This
contact energy term arises from an optimized energy function
used previously for protein structure prediction. The details
may be found in (19) and references therein. A 4-letter code
is utilized and the specific amino acids in each category are
denoted as hydrophilic (Ala, Gly, Pro, Ser, Thr), hydrophobic
(Cys, Ile, Leu, Met, Phe, Trp, Tyr, Val), acidic (Asn, Asp,
Gln, Glu) and basic (Arg, His, Lys). The energy contributions
of the contact potential to the total potential are given by a
three-well potential.

Herek is a function of the spatial distancerij of residuesi
and j andck is found from fitting the number of contacts of
the protein in each of the regions ofk as a function of
sequence length of the target protein. The interactions are
weighted by the interacting amino acids of classPi andPj

and their spatial distance. The parametersγ* have been
optimized based on the principle of minimal frustration. It
is critical to note thatγ* is a function of residue chemistry,
thus γ*u and γ*p have different values. More specifically,
γ*u was derived from a structural database of ordinary,
unphosphorylated proteins following the training procedure
for the parameters based on the quantitative form of the
minimal frustration principle (22). The training maximizes
the energy gap over the variance. This quantity is a measure
of how funneled the landscape is toward a properly folded
structure as compared to a random ensemble of molten
globule structures. The procedure for deriving the parameters
has been described in greater detail by Hardin et al. The
contact functionU controls the shape and sharpness of the
multiwell potential (22). It is important to stress that this

term is heterogeneous but generic and transferable. As for
γ*p, we have modeled the influence of the phosphorylation
of an amino acid by substituting for the phosphorylated
residue a supercharged glutamic acid residue. This strategy
was put forward in previous studies of phosphorylation of
NFAT where the structure was entirely unknown (21). An
analogous experimental approach based on the analogy
between phosphoserine and glutamate has also been dem-
onstrated to work in several cases, notably in studies on the
dematin headpiece (28) and tumor suppressor protein p53
(29). These studies show that the Ser-to-Glu mutant closely
mimics the conformation of the phosphorylated protein. The
details of the implementation of the hypercharged residue
and its interactions with other residues as well as robustness
and caveats have already been described by Shen et al. (21).

As H* u, H* p andHu share the same values for all other
energy terms, it would seem to be extremely demanding to
try to predict the exact changes based on this generic long-
range term alone. Still we will present quite a successful
demonstration of the importance of the generic long-range
potential in predicting the phosphorylated conformation. The
trends of conformational changes generated byH*p observed
in the simulations are consistent with the trends generated
by H* u and thus by experiments. Constant temperature MD
simulations with the HamiltonianH* c,L were performed to
predict the structure of the phosphorylated protein. In these
simulations the starting structure was fixed to be the average
NMR structure of the unphosphorylated protein. Following
this a total of 16000× 2 ) 32000 independent structures
were sampled.

RESULTS FOR THE NATIVE-STRUCTURE-BASED
HAMILTONIANS

1. Free Energy Landscape of Phosphorylated Proteins.
To sensibly study global effects of phosphorylation using
coarse-grained models, the contact maps of the unphospho-
rylated and phosphorylated forms of the test proteins must
be different, that is, sufficiently large to be reflected in the
contact maps of the test proteins. The contact maps of the
unphosphorylated and phosphorylated conformations of
cystatin and NtrC are shown in Figure 1. The important
conformational changes induced by phosphorylation of
cystatin do indeed present themselves in the contact map.
Phosphorylation however introduces rather minor perturba-
tions to the cystatin system. The contact map of NtrC shows
more substantial changes upon phosphorylation. The contacts
of the phospho residue in both the unphosphorylated and
phosphorylated conformations are identical, but phosphory-
lation apparently introduced long-range effects that led to
the global conformational change of NtrC.

Molecular dynamics simulations with the native-structure-
based Hamiltonians were performed to obtain adequate
sampling of the conformations of cystatin and NtrC in their
unphosphorylated and phosphorylated conformations. First,
snapshots of MD simulations were sampled with the un-
phosphorylated native-structure-based Hamiltonian,Hu. For
each snapshot, the energyEu and the order parameterQu,
which measures similarity to the average structure of the
unphosphorylated conformation, were calculated. The prob-
ability distributionF was computed. This allows calculation
of the free energy,F(r) ) -kBT ln(F(r)/F0). For the same

H*u/p ) H* c,L,u/p + Hc,S+M,u + Hbb (9)

H* c,L,u/p ) -ε* ∑
i<j-12

∑
k)1

3

γ*(Pi,Pj,k) ck(N) ×
U[rmin(k),rmax(k),rij] (10)
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snapshots obtained withHu, the energyEp, which can be
obtained from the Hamiltonian of the phosphorylated con-
formation,Hp, and the order parameterQp were computed.
The 2D free energy profiles of unphosphorylated cystatin
and NtrC are plotted in Figures 2 and 3. The set of (Eu,Qu)
and (Ep,Qp) found for snapshots at variousQu andQp was
used to obtain the free energy difference∆F(r) ) Fp(r) -
Fu(r) via the cumulant expansion equation.

The gradient of∆F(r) is also plotted in Figures 2 and 3
and is indicated by the arrows on the free energy landscape
at each position along the folding order parameter. The
lengths of the arrows indicate the relative magnitude and
direction of the change of∆F(r). Also the same procedure
is applied to conformations sampled in molecular dynamics
runs with theHp Hamiltonian as energy function. The results
are plotted in Figures 2 and 3.

The free energy profile for cystatin at a simulation
temperature close to the folding temperature ofT ) 1.0
shows a simple two-state folding process with an unfolded
and a folded basin (Figure 2) separated by a barrier of about
4kBT. The coordinates inQu,Qp of the two free energy
minima for the unphosphorylated protein are given by
(0.29,0.25) for the unfolded basin and (0.64,0.52) for the
folded basin. The free energy minimum for the folded state
of the phosphorylated cystatin is located at (0.49,0.62). The
gradient of the free energy difference∆F(r) is also shown
as a vector that gives a good indication at each value of the
reaction coordinate, how phosphorylation effects the profile.
In the phase space region ofQu e 0.5 the arrows point
directly into the direction of the phosphorylated protein. This
is due to the fact that, before reaching the transition state,

the two forms of the unphosphorylated and phosphorylated
protein can easily interchange. Even after crossing the
transition state, the direction of the gradient of both forms
is almost the same as before with the difference that most
arrows do point slightly in the direction of lowerQu, the
unfolding direction. Figure 2 shows the free energy plot for
sampling of phosphorylated conformations withHp. The
resultant 2D free energy landscape was similar to the
landscape obtained withHu and using the cumulant expan-
sion method to determine∆F(r). Principal component
analysis was performed and the conformations were projected
onto the first two dominant principal components as shown
in Figure 2. For every projected snapshot it is known how
folded the structure is and also if the snapshot stems from a
simulation of the unphosphorylated or phosphorylated pro-
tein. The principal components therefore correspond to
folding and phosphorylation, and we can name them the
folding principal componentPCfold and the phosphorylation
principal componentPCphos. PCfold measures the general
folding order with more negativePCfold indicating a more
folded set of structures.PCphos measures how much a
conformation is similar to the phosphorylated conformation,
that is, the negative direction corresponds to the direction
of conformational changes that occur upon phosphorylation.
Projection of the changes ofPCphosonto a contact map allows
inspection of phosphorylation induced contact changes. The
PCphos contact map shows the dominating contact changes
upon phosphorylation in blue, while contacts dominating in
the unphosphorylated form show up in red. Direct compari-
son of the structural changes of the simulated ensembles
(Figure 2d) to the changes observed in the contact map

FIGURE 1: Contact maps of (a) cystatin and (b) NtrC and the corresponding structures shown in (c) and (d). The average contact maps for
the unphosphorylated conformations are shown in the upper triangle, while the contacts of the phosphorylated protein forms are projected
on the lower triangle.
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obtained from the pdb native structures of the unphospho-
rylated and phosphorylated form (Figure 1a) show excellent
agreement, i.e., contacts that are exclusively formed in the
unphosphorylated form show up as red while contacts that

are solely formed upon phosphorylation show up in
blue.

Three free energy minima are found in the free energy
plot of unphosphorylated NtrC at temperatureT ) 1.0 (Figure

FIGURE 2: Free energy landscapes of cystatin folding for the unphosphorylated form (a) and the phosphorylated form (b). The white
contour lines are drawn to facilitate observation of the native and unfolded basins in the free energy landscape. Arrows indicate the gradient
of the free energy landscape pointing in the direction of phosphorylation and scaled in size to representable values. Snapshots of the
conformations of unphosphorylated cystatin (green) and the phosphorylated cystatin (purple) projected along the first two dominant principal
components in (c). The largest two principal components shown in the contact map form (d, e).

FIGURE 3: Free energy landscapes of NtrC folding for the unphosphorylated form (a) and the phosphorylated form (b). Arrows and contour
lines are drawn for better visualization. Snapshots of the unphosphorylated NtrC (green) and the phosphorylated NtrC (purple) projected
along the first two dominant principal components in (c). The largest two principal components are shown in the contact map form (d, e).
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3). This suggests that the unphosphorylated NtrC is not a
two-state folder but has a well-ordered intermediate at
coordinates inQu,Qp given by (0.7,0.5). The native basin is
located at (0.87,0.6), and the unfolded basin is at (0.17,0.16).
The gradient of the free energy difference∆F(r) is again
plotted using arrows, that indicate the direction and magni-
tude of the change in∆F(r) upon phosphorylation. The
arrows show a largest gradient in the intermediate state,
which would suggest that transitions from the unphospho-
rylated conformation to the phosphorylated conformations
of NtrC are preferred in the intermediate states of folding.
The free energy profile obtained fromHp for the phospho-
rylated NtrC is also shown (Figure 3). The folding is also
3-state with three main free energy minima. Principal
component analysis was performed on the snapshots obtained
in the molecular dynamics simulations with Hamiltonians
Hu andHp (Figure 3). It is apparent from the figure that the
3-state folding behavior is well captured by the principal
component analysis. The first two components are by
themselves very useful in capturing the folding and the
effects of phosphorylation respectively. We identify the
principal componentPCfold, which provides a good indication
of the degree of the folding order, where a more negative
PCfold indicates a more folded set of conformations.PCphos

serves to distinguish the unphosphorylated ensemble from
the phosphorylated ensemble. Projection of the first two
principal components of snapshots is shown in Figure 3. The
agreement with experiment is great, again. Figure 3 proves
useful in identifying the trends of contact changes upon
phosphorylation. We note that, for a 3-state folder, the third
principal component might also be important. Plots of
combinations of any two of the first three components show
3-state behavior, however first two principal components do
distinguish the global folding and phosphorylation best.

2. Changes in Free Energy Profiles between Unphospho-
rylated and Phosphorylated Protein Conformations.In vivo,
proteins that become phosphorylated can have two sensibly
different average conformations as revealed by X-ray crystal-
lography or NMR despite the two forms having obviously
almost identical sequences (except for the phospho residues,
the two sequences are identical). Normally sequences with
high sequence similarity adopt the same fold (30). Thus it
may seem obvious to assume that in fact the unphosphory-
lated protein itself can assume both conformations, the
unphosphorylated conformation and the phosphorylated
conformation. However, for phosphorylation to crisply act
as a molecular switch, the two conformations should be
separated by a high barrier such that the unphosphorylated
protein will not likely spontaneously adopt the incorrect
structure and hence function of the phosphorylated protein.
It is natural then to ask how difficult is it for the unphos-
phorylated protein to change from the unphosphorylated
basin to the phosphorylated basin. Nature achieves this basin
change by an enzymatic reaction that adds a phosphate group
to the residue susceptible for phosphorylation. If the energy
landscape were perfectly funneled with only a single set of
native contacts (as forHu and Hp) (31), the free energy
difference between the basins would be large if the two forms
were very different.

In this study the sampling was performed with two
different Hamiltonians. To understand the free energy profile
for motion between the native (unphosphorylated and phos-

phorylated) basins, we use a simple approach to determine
the barrier location and barrier height. We estimate an
effective barrier height by finding the minimum of the
intersection of the two basins found in the free energy
profiles. A further simplification is made assuming an
isotropic, harmonic basin shape. The free energy profile
around a basin with minimum position (Q1,Q2) is assumed
to be of the form ofF(Qu,Qp) ) (a/2)[(Qu - Q1)2 + (Qp -
Q2)2] + F0. We study the profile along the reaction
coordinates that link two basins (Q1

u,Q2
u) and (Q1

p,Q2
p) with a

simple straight line. Without loss of generality, we assume
the narrower of the two basins is at the origin, and the other
basin is at distanceb ) [(Q1

u - Q1
p)2 + (Q2

u - Q2
p)2]1/2. Their

minima are at 0 andc ) ∆F respectively. Along this one-
dimensional coordinate we haveF1(r) ) (a1/2)r2 andF2(r)
) (a2/2)(r - b)2 + c under the conditiona1 g a2. As shown
in Figure 4, the intercept occurs at

The barrier height is then given byF# ) (a1/2)r#2. If a1 ) a2

) a, then we can computer# ) b/2 + c/(ab). For the case
of cystatin, we found that atT ) 1, Qu ) (0.64,0.52) andQp

) (0.49,0.62), we haveb ) 0.57, a rough fit givesa ) 500
andc ) 0.01. As a result we found that the barrier height of
the free energy isF# ) 20 for cystatin. Similarly we find at
T ) 0.8Troom, Qu ) (0.87,0.6) andQp ) (0.52,0.72),c )
0.5, b ) 1.17, anda ) 600, we foundF# ) 90 for NtrC.
The unit of barrier height is given bykBT ∼ 0.6 kcal/mol.
Note that both numbers seem rather high. As explained by
Miyashita et al. (32) the local quadratic approximations are
first of all quite rough and should only lead to an approximate
barrier with the right order of magnitude. In reality, the
barrier is much lower, because the transition state is not
necessarily located on the straight line connecting the
unphosphorylated basin with the phosphorylated basin. The
height of the barrier should be interpreted as follows: In
the context of a perfectly funneled landscape to a single
minimum, the barrier located on the direct route between
the unphosphorylated basin and phosphorylated basin of
cystatin would be so large as to prevent an equilibrium of
both conformations at the same time. We see this allows

FIGURE 4: The illustration of free energy barrier estimation.

r# )
-a2b + [a1a2b

2 + 2c(a1 - a2)]
1/2

a1 - a2
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the phosphorylation event to act as a strict switch. For NtrC
this barrier is several times larger and the only way for the
unphosphorylated NtrC to reach the phosphorylated basin
should be by means of more sophisticated pathways including
local unfolding. In our view it is clear that protein cracking
motions (32, 33) are involved in the change.

PREDICTION OF STRUCTURAL CHANGES IN
CYSTATIN WITH THE LINEAR RESPONSE
METHOD

Small structural changes in protein conformations upon
pertubation can be predicted by a linear response method,
which relates the changes in residue-residue interactions of
the unphosphorylated Hamiltonian to the phosphorylated
Hamiltonian. Experiments for cystatin indicate only minor,
and hence small, global conformational change upon phos-
phorylation (14). The main global changes of phosphoryla-
tion seen in the contact map in Figure 1 include different
contacts of the helical region (residues 10-28 for helix 1)
with theâ-like structures (residues 34-38 for strand 1, 40-
46 for strand 2, 50-60 for strand 3, 80-93 for strand 4 and
100-105 for strand 5). There are also local rearrangements
of contacts in theâ strand 4 and the preceding loop region
(residues 68-80) including the phospho residue. These trends
of structural changes were correctly captured by the PCA
for the native-structure-based simulations (seePCfold in
Figure 2).

We applied the linear response method to estimate the
structural changes on the contact map of cystatin upon

phosphorylating the protein. The result of the prediction of
the change of contact formation,〈δqi,j〉, is shown in Figure
7 as a contact map, which allows direct inspection of the
residue-residue contact changes. The linear response method
results are in excellent agreement with experiment. The
global structural changes, i.e., the loss of contact formation
between the helix and theâ-like regions, were well captured.
Further, the linear response method predicted the same local
changes in the loop region around the phosphorylated residue
as observed in experiments. Additionally, loss of loop
contacts in residue region 65-75 were predicted. This region
changes conformation and exhibits a 1.1 Å rms deviation of
the phosphorylated native NMR structure from the unphos-
phorylated native NMR structure. It is clear that this linear
response method developed to capture structural changes
upon phosphorylation provides results consistent with ex-
perimental results.

PREDICTION OF THE PHOSPHORYLATED
CONFORMATION WITH AN AMH-LIKE
CONTACT POTENTIAL

It would be desirable to have a transferable Hamiltonian,
that can predict the structure of any protein before and after
phosphorylation from sequence information alone. Much
progress toward de novo structure prediction has already been
made by our group with techniques like those employed in
ref (20) and by other groups with other styles of energy
function (34, 35). However, the proteins that change under
phosphorylation, as we see, probably deviate from a strictly

FIGURE 5: PCA of the contact maps for the conformations of NtrC obtained atT ) 0.75 (the lower temperature facilitates sampling of the
folded structures) with the native-structure-based Hamiltonian and also the phosphopredictive AMH. Also shown are the contact maps for
phosphorylation principal component for the ensembles obtained with the phosphopredictive Hamiltonian with short:medium:long-range
energy ratio of 1:1:1 and 1:1:2.
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funneled landscape. This makes the problem of complete de
novo prediction more challenging than the usual. A much
easier but still challenging computational problem would be
to determine the structure of the phosphorylated test protein
given only the structure of one form, say, the unphospho-
rylated conformation, or vice versa. Here we show how this
can be done. To model how phosphorylation alters the
tertiary structure of the protein conformation, we designed
a predictive HamiltonianH * p, using short-range structural
elements found in one form along with generic tertiary
interactions. This Hamiltonian described in the method
section is based on the de novo AMW prediction scheme.
We call it the “phosphopredictive AMH’’. The Hamiltonian
H * p uses, as the sole input, the conformation of the

unphosphorylated protein for only the short- and intermedi-
ate-range interactions. This assures a strong bias in the short
and medium class for local secondary structure to form such
elements as seen in the unphosphorylated protein. To model
the effect of phosphorylation we have introduced a tunable
3-well long-range (in sequence space) residue-residue
contact potential. This potential is modified to include
interactions of the phospho residue. The strategy to model a
phospho residue as a supercharged glutamic acid residue in
the long-range potential can now be tested. We call the
resulting energy function the “phosphopredictive’’ Hamil-
tonian.

The first set of molecular dynamics simulations with the
phosphopredictive Hamiltonian were performed with the
original sequence of the unphosphorylated proteins, cystatin
and NtrC. Since the input used is the contact map of the
unphosphorylated protein, the predictive Hamiltonian mainly
samples structures similar to those found in the folded basin
of the unphosphorylated proteins when the long-range term
is added as a perturbation term. Additionally, the energetic
contributions of short-, medium- and long-range potentials
were scaled to be equal in these simulations in keeping with
estimates of the contributions of these parts of the interaction
for funneled proteins. To check whether the sampled
structures were similar to the structures found in the folded
basins that would be obtained with the pure native-structure-
based Hamiltonians, these snapshots were projected onto the
first two principal components obtained with the native-
structure-based Hamiltonians. The projections of the snap-

FIGURE 6: Overlay of a typical structure of NtrC (blue) obtained with the phosphopredictive Hamiltonian with the native NMR structure
of the unphosphorylated form of NtrC (red) shown in (a) as well as the phosphorylated form of NtrC (purple). Probability distribution of
rmsd from unphosphorylated (U) and phosphorylated (P) conformation shown in (c). In (d), rmsd as a function of residue index shown for
the NMR structures as well as for the ensembles obtained from molecular dynamics simulations. The curves also display the error bars for
the simulation results.

FIGURE 7: The linear response prediction of the changes of contact
formation upon phosphorylation for cystatin.
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shots obtained with this Hamiltonian for NtrC are shown in
red in Figure 5. Clearly the introduction of the long-range
potential did not alter the ability to sample native unphos-
phorylated conformations. These projections serve as a
baseline for the changes from results obtained with a pure
native-structure-based Hamiltonian to those from a Hamil-
tonian with a heterogeneous contact potential.

Phosphorylation effects can be mimicked first by mutating
the phospho residue simply to a glutamic acid. Thus a set of
molecular dynamics simulations with the predictive Hamil-
tonian based on a pure were performed with precisely this
modification in which the phospho residue was mutated to
a glutamic acid. The snapshots for these simulations were
projected onto the first two principal components and the
results for NtrC were plotted in black in Figure 5. Clearly,
the snapshots only slightly deviate from the snapshots of the
folded state of the unphosphorylated protein. To test if using
a nonadditive potential with water-mediated interactions will
improve the quality of the prediction of the phosphorylated
state, the same simulations were performed with the AMW
potential (36). Contact maps of each snapshot obtained with
the AMW were computed and projected onto the pricncipal
components. The AMW ensemble projection had almost
identical values ofPCphos and PCfold, and hence contact
formation, as did the ensemble obtained with the simple
contact based phosphopredictive Hamiltonian for the same
glutamic acid mutant. The rmsd’s of heavy atoms of both
the predicted ensembles from the NMR structure of the
phosphorylated NtrC were similar. The AMW had on
average 0.1 Å lower RMSDs from the NMR structure.
Simulations with the AMW did show only minor improve-
ment over the AMC in this case.

An important feature of our predictive Hamiltonian is the
ability to “supercharge’’ the phospho residue, that had been
mutated into a glutamic acid. It is possible to assign different
weights to the strength of interaction of the supercharged
residue with other residues. Simulations have been performed
for two different scalings of the strength of interaction,
namely 1.4 and 2.0. The difference in results obtained with
Hamiltonians of these two charge scales is subtle. We will
explicitly show only the results for a charge of 1.4. The
contact maps of the structures sampled with the supercharged
phosphopredictive AMH were computed and projected onto
the folding and phosphorylation principal components (see
Figure 5, blue dots). ThePCfold values of the sampled
conformations had similarPCfold values to both the values
of the unphosphorylated and phosphorylated ensembles. The
more informative principal component, the phosphorylation
principal componentPCphos, was shifted toward more nega-
tive values indicating enhanced formation of those contacts
as seen in the phosphorylated ensemble rather than the
unphosphorylated ensemble. To elucidate the predictive
capability of the phosphopredictive Hamiltonian, the contact
map corresponding toPCphoswas plotted (Figure 5). Defining
four main helices in the native NMR structure of the
phosphorylated form of NtrC (residues 15-27 correspond
to helix 1, residues 36-42 to helix 2, residues 67-73 to
helix 3 and residues 108-123 to helix 4), the contact map
displays long-range contact changes for the phospho residue
(residue 54) with the turn region before helix 1, and also
between the regions of helix 3 and helix 4, that are similar
to the changes in contact formation seen for the vanilla

Hamiltonian. The contact changes between the phospho
residue and the helix 2 region were not seen. Apart from
those, the predictive Hamiltonian captured the long-range
effects of the modified phospho residue in good agreement
with the experimental determinations. To measure the quality
of the structures sampled with the phosphopredictive AMH,
the rmsd of the heavy atoms from their native NMR structure
were computed. The average rms deviation from the NMR
structure of the phosphorylated NtrC was about 2.7 Å with
a standard deviation of 0.1 Å. Since the principal component
analysis indicated a closer resemblance to the unphospho-
rylated ensemble rather than the phosphorylated ensemble,
the rmsd of heavy atoms from the NMR structure of the
unphosphorylated NtrC were also computed. The average
rmsd was about 2.3 Å with a standard deviation of 0.1 Å.
This result is not surprising due to the fact that the short-
and medium-range structure is strongly biased toward the
native structure of the unphosphorylated form. A more valid
assesment of the quality of the predicted structure can be
made by comparing the rmsd of the predicted ensemble from
the respective ensembles, that would be obtained, when the
NMR structures and sequences served as the sole input for
the phosphopredictive Hamiltonian (see Figure 5, red dots
for the unphosphorylated ensemble and cyan dots for the
phosphorylated ensemble). We call these ensembles the
baseline ensembles. Both baseline ensembles have similar
projections on the principal component space compared with
their respective ensembles obtained with the vanilla Hamil-
tonians. The predicted ensemble (blue) has an average of
about 2.5 Å rmsd from both baseline ensembles, the
phosphorylated and unphosphorylated ones.

The simulations, so far, were performed with short-,
medium- and long-range contributions to the energy that are
kept equal. This fact is motivated by the findings of Saven
and Wolynes (37), who have estimated that in protein folding
the contribution to the native energy arising from specific
local interactions is comparable to those arising from specific
tertiary interactions. It is therefore interesting to see whether
different weights of the energetic contribution of the long-
range interactions might improve the predictions. Several sets
of simulations were performed with different total strength
of interactions ranging from half the original strength up to
twice as large. Most simulations did not show any better
structures than what could be predicted using simulations
of the glutamic acid mutant only. Only the results for
simulations with twice the strength of the long-range
interactions are therefore shown in Figure 5. These results
display the most improvement for the prediction results. The
contact maps were computed and projected onto the folding
and phosphorylation principal components (see Figure 5,
yellow dots). On a residue-residue contact level, this
Hamiltonian best described the contact changes observed
upon phosphorylation of NtrC. The scaled long-range
interactions did perturb the local structure of the protein. An
overlay of several predicted structures is shown in Figure
6a,b for visualization.

We also calculated for each molecular dynamics snapshot
the rmsd of backbone atoms only from both NMR structures,
the unphosphorylated and the phosphorylated NMR struc-
tures. Figure 6c shows the respective probability distributions.
The probability distribution of the root-mean-square devia-
tions of sampled structures from the NMR structure of the
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phosphorylated conformation (Figure 6c, green curve) is seen
to be shifted slightly toward lower values compared to the
distribution of the deviation from the unphosphorylated NMR
structure (Figure 6c, red curve). In other words, the structures
obtained with the phosphopredictive AMH resemble more
the phosphorylated form than they do the unphosphorylated
form. In the range of observed values of rmsd, the phos-
phopredictive AMH clearly predicts structures which are
more similar to the phosphorylated conformation than to the
unphosphorylated conformation. These results support the
findings of the principal component analysis that the phos-
phopredictive AMH indeed does predict conformations most
similar to the global structure of the phosphorylated NMR
structure.

Another way of seeing whether changes due to the
phosphorylation are well predicted is to compare the motions
at the individual residue level. We therefore computed two
sets of rmsd at residue resolution. The first is the rmsd of
the experimentally determined, unphosphorylated NMR
structure from the experimentally determined, phosphorylated
NMR structure. The second is the rmsd and its uncertainty
for the predicted snapshots of the phosphorylated conforma-
tion from the structure of the average predicted structure of
the unphosphorylated conformation. These comparisons
allow us to directly compare the structural changes observed
in simulation to the structural changes observed in experiment
at the individual residue level. The results of these compari-
sons are plotted in Figure 6d, where the green curve
represents theCR-rmsd between the experimentally deter-
mined (unphosphorylated vs phosphorylated) structures and
the red curve represents the difference for the corresponding
conformations obtained in the molecular dynamics simula-
tions. The trend of rmsd differences at the individual residue
level observed in the experimentally determined structures
and for the predicted structures shows the phosphopredictive
AMH correctly captures the same structural changes at
residue level that are observed in experiments. In particular
the predicted regions of largest structural change correlate
well with the most moved regions determined from experi-
ment. We see the phosphopredictive AMH can provide a
useful tool not only for theoreticans who wish to tease out
the molecular forces responsible for phosphorylation induced
conformational switching but also for those who only wish
to identify at residue level and on a residue-residue contact
level the effect of phosphorylation and thereby understand
where key mutations offering phosphorylation induced
changes can be made.

CONCLUSIONS

We have first discussed simulations with the native-
structure-based HamiltoniansHu andHp. While unphospho-
rylated and phosphorylated conformations both pre-exist on
the landscape, these studies indicate the change of the
landscape by post-translational modification is needed to
allow the different structure ensembles to compete thermo-
dynamically. To relate the landscapes of the two forms of a
protein one can calculate the free energy differences using
the cumulant expansion method (see Figures 2 and 3). The
perturbation approach shows that phosphorylation changes
the free energy profile by tilting the landscape to favor the
phosphorylated basin. The calculations show the unphos-
phorylated protein has evolved so as not to adopt the

phosphorylated conformation until the protein gets modified
through phosphorylation even though superficially the rmsd
between these conformations seems not to be very large. For
a simply funneled completely minimally frustrated protein
landscape idealized by our HamiltoniansHu and Hp, the
unphosphorylated protein would rarely adopt the structure
of the phosphorylated protein without post-translational
modification. Partial unfolding mechanisms are likely re-
quired for these dramatic conformational switching events
in NtrC.

Principal component analysis allows us to visualize the
conformations of the ensembles of unphosphorylated and
phosphorylated test proteins by projecting all changes onto
the first two dominant components. In Figures 2 and 3, one
contact based principal componentPCphosdisplayed mapping
the major residue contacts that change upon phosphorylation.
This contact map compares quite well to the contact map
obtained from the linear response theory prediction of the
changes (Figures 2 and 7).

Finally we used a structure prediction Hamiltonian,H* p,
to predict the final phosphorylated conformation for two
systems. This algorithm successfully captures both the trends
of conformational change of the unphosphorylated protein
upon phosphorylation that are observed in experiments for
the long-range contacts of the phospho residue and gives
indeed the dominant structures. The phospho-predictive
AMH provides a powerful tool to predict the major changes
of structure upon phosphorylation given only information
on the unphosphorylated conformation, or vice versa,
pinpointing the major residue contact shifts. The Hamiltonian
is general and captures the contact changes seen in small
conformational changes as well as large conformational
changes.
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